

Space-Grade-E Dual-Quad Serial Persistent SRAM Memory

(AS301G208, AS302G208, AS304G208, AS308G208)

Features

- Interface
 - Dual Quad SPI support 8-bit wide transfer
 - Dual QPI (4-4-4) up to 100MHz SDR
 - Dual QPI (4-4-4) up to 50MHz DDR
- Density
 - 1Gb, 2Gb, 4Gb, 8Gb
- Voltage Range
 - Under Radiation Vcc: 2.50V 3.00V *
 - V_{CCI0}: 1.8V, 2.5V, 3.3V *
- Temperature Range
 - Operating: -40°C to 125°C
 - Operating under Radiation: -40°C to 85°C *
- Technology
 - 22 nm pMTJ STT-MRAM
 - Data Endurance: 10¹⁶ write cycles
 - Data Retention: 20 years @ 85°C

- Packages
 - 224-ball FBGA (20mm x 20mm)
 - Data Protection
 - Hardware Based
 - Dedicated Hardware Signals (HBP0, HBP1, HBP2) in conjunction with Top/Bottom Select Signal (HTBSEL)
 - Software Based
 - Address Range Selectable through Configuration bits (Top/Bottom, Block Protect [2:0])
- Qualification
 - JESD47H.01
 - 168-hour burn-in at 125°C
- Radiation Exposure Limits *:
 - ≤ 100K RAD TID,
 - LET ≤ 75 MeV cm2/mg
- RoHS & REACH Compliant **

* To assure a Safe Operating Area, limit the device to these specifications.

** Leaded Balls available

Table of Contents

Features	L
Table of Contents	2
General Description	5
Ordering Options	õ
Valid Combinations — Standard	7
Marking Specification — Standard	7
Signal Description and Assignment	3
Package Options13	3
224-ball FBGA (Balls Down, Top View)13	3
Package Drawings14	1
Device Initialization	3
Memory Map20)
Address Range22	L
Read any Register Addresses22	L
Hardware Block Protection22	2
Register Map23	3
Status Register / Device Protection Register (Read/Write)2	3
Software Block Protection	1
Extended Address Register (Read/Write)2	5
Flag Status Register (Read Only)27	7
Device Identification Register (Read Only)28	3
Configuration Register 1 (Read/Write)29)
Configuration Register 2 (Read/Write)30	
Interrupt Configuration Register (Read/Write)3 ²	
Error Correction Code (ECC) Test – Data Input Register	
Error Correction Code (ECC) Test – Error Injection	
Error Correction Code (ECC) Test – Data Output Register	
Error Correction Code (ECC) – Error Count Register	
Instruction Set	
Instruction Description and Structures	
Electrical Specifications	3

Revision:H.2Avalanche TechnologyPage 2 | 61

CS# Operation & Timing	52
Data Output Operation & Timing	53
Thermal Resistance	57
Product Use Limitations	58
Limited Warranty	58

Figure 1: Ordering Options	6
Figure 2: Device Marking	7
Figure 3: Device Pinout	8
Figure 4: Single CS# System Block Diagram	8
Figure 5: Dual-CS# System Block Diagram	8
Figure 6: 224-ball FBGA	13
Figure 7: 224-ball FBGA	14
Figure 8: Functional Block Diagram – Dual QSPI Device 1	16
Figure 9: Functional Block Diagram – Dual QSPI Device 2	17
Figure 10: Power-Down Behavior	19
Figure 11: Address Range	21
Figure 12: Description of (1-0-0) Instruction Type	39
Figure 13: Description of (1-0-1) Instruction Type	
Figure 14: Description of (1-1-1) Instruction Type (Without XIP)	40
Figure 15: Description of (1-1-1) Instruction Type (With XIP)	40
Figure 16: Description of (1-1-1) Instruction Type (Without XIP)	41
Figure 17: Description of (1-1-4) Instruction Type (Without XIP)	41
Figure 18: Description of (1-4-4) Instruction Type with XIP	43
Figure 19: Description of (4-4-4) Instruction Type (Without XIP)	43
Figure 20: Description of (4-4-4) Instruction Type with XIP	44
Figure 21: Description of (1-1-1) DDR Instruction Type (With XIP)	
Figure 22: Description of (1-4-4) DDR Instruction Type (With XIP)	46
Figure 23: CS# Operation & Timing	52
Figure 24: SDR Command, Address and Data Input Operation & Timing	53
Figure 25: DDR Command, Address and Data Input Operation & Timing	53
Figure 26: SDR Data Output Operation & Timing	54
Figure 27: DDR Data Output Operation & Timing	54
	_
Table 1: Technology Comparison	
Table 2: Multi-Die Package Density	
Table 3: Valid Combinations List	
Table 4: Signal Description for 224-Ball FPGA Package	
Table 5: Interface Modes of Operations – Device 1	
Table 6: Interface Modes of Operations – Device 2	
Table 7: Clock Edge Used for instructions in SDR and DDR modes	16
Table 8: Modes of Operation – Device 1	
Table 9: Modes of Operation – Device 2	
Table 10: Power Up/Down Timing and Voltages	
Table 11: Memory Map	
Table 12: Register Addresses	21

Revision:H.2Avalanche TechnologyPage 3 | 61

Table 13: Hardware Top Block Protection Address Range Selection (HTBSEL Signal = L)	22
Table 14: Hardware Bottom Block Protection Address Range Selection (HTBSEL Signal = H)	
Table 15 : Status Register – Read and Write	
Table 16: Software Top Block Protection Address Range Selection (TBPSEL=0)	
Table 17: Software Bottom Block Protection Address Range Selection (TBPSEL=1)	
Table 18: Software Write Protection Modes	
Table 19: Extended Address Register – Read and Write	26
Table 20: Flag Status Register - Read Only	
Table 21: Device Identification Register – Read Only	
Table 22: Configuration Register 1 (CR1) – Read and Write	
Table 23: Configuration Register 2 (CR2) – Read and Write	
Table 24: Interrupt Configuration Register – Read and Write	
Table 25: ECC Test Data Input Register – Read and Write	
Table 26: ECC Test Error Injection Register – Read and Write	
Table 27: ECC Test Data Output Register – Read Only	
Table 28: ECC Count Register – Read Only	
Table 29: Memory Array Read Latency Cycles vs. Maximum Clock Frequency (with XIP)	
Table 30: Memory Read Latency Cycles vs. Maximum Clock Frequency (without XIP)	
Table 31 : Read Any Register Command Latency Cycles vs. Maximum Clock Frequency	
Table 32: Instruction Set	
Table 33: Recommended Operating Conditions	
Table 34: Pin Capacitance	
Table 35: Endurance & Retention	
Table 36: DC Characteristics	
Table 37: Magnetic Immunity Characteristics	-
Table 38: AC Test Conditions	
Table 39: Absolute Maximum Ratings	
Table 39: Absolute maximum Natings Table 40: SDR CS# Operation	
Table 40: SDR CS# Operation	
Table 42: SDR Command, Address, XIP, and Data Input Operation & Timing	
Table 43: DDR Command, Address, XIP, and Data Input Operation & Timing	
Table 44: SDR Data Output Operation & Timing	
Table 44. SDR Data Output Operation & Timing Table 45: DDR Data Output Operation & Timing	
Table 45: WP# Operation & Timing	
Table 40. WF# Operation & Timing Table 47: Thermal Resistance Specifications	
าลมเอ รา. การกากลา กรรารเล่าเรื่อ รัตวิธีเการสมบาร	

General Description

ASxxxx208 is a Spin-transfer torque Magneto-resistive random-access memory (STT-MRAM). It is offered in density ranging from 1Gbit to 8Gbit. MRAM technology is analogous to Flash technology with SRAM compatible read/write timings (Persistent SRAM, P-SRAM). Data is always non-volatile with 10¹⁶ write cycles endurance and greater than 20-year retention @85°C.

	SRAM	Flash	EEPROM	MRAM
Non-Volatility	-		\checkmark	\checkmark
Write Performance		-	-	\checkmark
Read Performance		-	-	\checkmark
Endurance		-	-	\checkmark
Power	-	-	-	\checkmark

MRAM is a true random-access memory; allowing both reads and writes to occur randomly in memory. MRAM is ideal for applications that must store and retrieve data without incurring large latency penalties. It offers low latency, low power, infinite endurance and scalable non-volatile memory technology.

ASxxxx208 has a Serial Peripheral Interface (SPI). SPI is a synchronous interface which uses separate lines for data and clock to help keep the host and slave in perfect synchronization. The clock tells the receiver exactly when to sample the bits on the data line. This can be either the rising (low to high) or falling (high to low) or both edges of the clock signal; please consult the instruction sequences in this datasheet for more details. When the receiver detects that correct edge, it can latch in the data.

ASxxxx208 connects two Quad SPI devices with dual-CS#, providing an eight bit I/O data path. Each device can be configured and operate independently with its own register sets, managing by a sperate CS#.

ASxxxx208 is available in an 96-ball FBGA package. The package has separate balls for CS1#, CLK1#, and INT1 (Dual-Quad SPI device 1) and CS2#, CLK2#, and INT2 (Dual-Quad SPI device 2). This package is compatible with similar low-power volatile and non-volatile products.

Table 2: Multi-Die Package Density

Density	512Mb Die	1Gb Die
1Gb	x2	-
2Gb	-	x2
4Gb	-	x4
8Gb	-	x8

ASxxxx208 is offered with industrial extended (-40°C to 125°C) operating temperature ranges: this is measured as the junction temperature.

Ordering Options

The ordering part numbers are formed by a valid combination of the following options:

Figure 1: Ordering Options

Valid Combinations — Standard

Valid Combinations list includes device configurations currently available. Contact your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Valid Combinations					
Base Part Number	Temperature Range	Package Type	Packing Type	Part Number	
AS301G208-0108X	OM	CG	Y	AS301G208-0108X0MCGY	
AS302G208-0108X	OM	CG	Y	AS302G208-0108X0MCGY	
AS304G208-0108X	OM	CG	Y	AS304G208-0108X0MCGY	
AS308G208-0108X	OM	CG	Y	AS308G208-0108X0MCGY	
AS301G208-0108X	0M	СН	Y	AS301G208-0108X0MCHY	
AS302G208-0108X	0M	СН	Y	AS302G208-0108X0MCHY	
AS304G208-0108X	0M	СН	Y	AS304G208-0108X0MCHY	
AS308G208-0108X	OM	СН	Y	AS308G208-0108X0MCHY	

Table 3: Valid Combinations List

Marking Specification — Standard

The device will be marked according to the following specification:

Line #1 & Line #2 will match the part number in Table 3

Line #3 Will show: 5 digit Alphanumeric Code + Country of Origin + Date Code

Line #4 May or May not be marked. This field is reserved for Avalanche Technology

Line #5 May or May not be marked. This field is reserved for Avalanche Technology

хххх-уууу	•	Line #5
		LOGO
AS304G208-		Line #1
0108X0MCHY		Line #2
KM0YG KR 2337 🔸 🗕		Line #3
bbbbbb		Line #4

Figure 2: Device Marking

Revision: H.2 Avalanche Technology

Signal Description and Assignment

Figure 3: Device Pinout

Figure 5: Dual-CS# System Block Diagram

Revision: H.2

Avalanche Technology

Table 4: Signal Description for 224-Ball FPGA Package

Signal	Ball Assignment	Туре	Description
CS1#	L9	Input	Chip Select 1: When CS1# is driven High, the Quad SPI device 1 will enter standby mode. All other input pins are ignored and the output pin is tri-stated. Driving CS1# Low enables device 1, placing it in the active mode. After power-up, a falling edge on CS1# is required prior to the start of any instructions.
CLK1	K9	Input	 Clock 1: Provides the timing for device 1 serial interface. Depending on the mode selected, either single (rising or falling) edge or both edges of the clock are utilized for information transfer. In Single Data Rate mode (SDR) command, address and data inputs are latched on the rising edge of the clock. Data is output on the falling edge of the clock. In Double Data Rate mode (DDR) command is latched on the rising edge of the clock. In Double Data Rate mode (DDR) command is latched on the rising edge of the clock. Address and Data inputs are latched on both edges of the clock. Similarly, Data is output on both edges of the clock. The following two SPI clock modes are supported. SPI Mode 0 (CPOL = 0, CPHA = 0) – SDR and DDR SPI Mode 3 (CPOL = 1, CPHA = 1) – SDR only
INT1#	J12	Output	Interrupt 1: Output generated by device 1 when an unrecoverable ECC error is detected during read operation (output goes low on error).
SI1	M10	Input	Serial Data Input (SPI): The unidirectional I/O transfers data into device 1 on the rising edge of the clock in Single SPI mode.
IO[0]	IVITO	Bidirectional	Bidirectional Data 0 (QPI): The bidirectional I/O transfers data into and out of device 1 in Quad SPI mode.
SO1	MO	Output	Serial Data Output (SPI): The unidirectional I/O transfers data out of device 1 on the falling edge of the clock in Single SPI mode.
IO[1]	M9	Bidirectional	Bidirectional Data 1 (QPI): The bidirectional I/O that transfers data into and out of device 1 in Quad SPI mode.

Revision: H.2 Avalanche Technology Page 9 | 61

Signal	Ball Assignment	Туре	Description
WP1#	L11	Input	Write Protect 1 (SPI): Write protects the status register of device 1 in conjunction with the enable/disable bit of the status register. This is important since other write protection features are controlled 1through the Status Register. When the enable/disable bit of the status register is set to 1 and the WP# signal is driven Low, the status register becomes read-only and the WRITE STATUS REGISTER operation will not execute. This signal does not have internal pull-ups, it cannot be left floating and must be driven. WP# is valid only in Single SPI mode. This pin can be tied to Vcc if not used.
IO[2]		Bidirectional	Bidirectional Data 2 (QPI): The bidirectional I/O transfers data into and out of device 1 in Quad SPI mode.
IO[3]	M11	Bidirectional	Bidirectional Data 3 (QPI): The bidirectional I/O transfers data into and out of device 1 in Quad SPI mode. This pin can be tied to Vcc if not used.
CS2#	J10	Input	Chip Select 2: When CS2# is driven High, the Quad SPI device 2 will enter standby mode. All other input pins are ignored and the output pin is tri-stated. Driving CS2# Low enables device 2, placing it in the active mode. After power-up, a falling edge on CS2# is required prior to the start of any instructions.
CLK2	K8	Input	 Clock 2: Provides the timing for device 2 serial interface. Depending on the mode selected, either single (rising or falling) edge or both edges of the clock are utilized for information transfer. In Single Data Rate mode (SDR) command, address and data inputs are latched on the rising edge of the clock. Data is output on the falling edge of the clock. In Double Data Rate mode (DDR) command is latched on the rising edge of the clock. In Double Data Rate mode (DDR) command is latched on the rising edge of the clock. Address and Data inputs are latched on both edges of the clock. Similarly, Data is output on both edges of the clock. SPI Mode 0 (CPOL = 0, CPHA = 0) – SDR and DDR SPI Mode 3 (CPOL = 1, CPHA = 1) – SDR only
INT2#	K10	Output	Interrupt 2: Output generated by device 2 when an unrecoverable ECC error is detected during read operation (output goes low on error).
SI2	Mio	Input	Serial Data Input (SPI): The unidirectional I/O transfers data into device 2 on the rising edge of the clock in Single SPI mode.
IO[4]	M12	Bidirectional	Bidirectional Data 4 (QPI): The bidirectional I/O transfers data into and out of device 2 in Quad SPI mode.
SO2	NKO	Output	Serial Data Output (SPI): The unidirectional I/O transfers data out of device 2 on the falling edge of the clock in Single SPI mode.
IO[5]	N10	Bidirectional	Bidirectional Data 5 (QPI): The bidirectional I/O transfers data into and out of device 2 in Quad SPI mode.
WP2#	N9	Input	 Write Protect 2 (SPI): Write protects the status register of device 2 in conjunction with the enable/disable bit of the status register. This is important since other write protection features are controlled 1 through the Status Register. When the enable/disable bit of the status register is set to 1 and the WP# signal is driven Low, the status register becomes read-only and the WRITE STATUS REGISTER operation will not execute. This signal does not have internal pull-ups, it cannot be left floating and must be driven. WP# is valid only in Single SPI mode. This pin can be tied to Vcc if not used. Bidirectional Data 6 (QPI): The bidirectional I/O transfers data into and out of
IO[6]		Bidirectional	device 2 in Quad SPI mode.
IO[7]	N8	Bidirectional	Bidirectional Data 7 (QPI): The bidirectional I/O transfers data into and out of device 2 in Quad SPI mode.

Revision:H.2 Avalanche Technology

Page 10 | 61

1Gbit - 8Gbit Dual-Quad SPI P-SRAM Memory

Signal	Ball Assignment	Туре	Description
RESET#	J11	Input	RESET: This is a RESET# signal. When this signal is driven high, the device is in the normal operating mode. When this signal is driven low, the device is in reset mode and the output is High-Z.
HBP[0:2]	G12, G13, H14	Input	HPB0, HBP1, HBP2: these Hardware Block Protect signals, when driven High or Low, define the size of the memory array to be hardware protected against all Write memory array instructions: These balls have a Pull down to Vss. If left disconnected they will be seen by device as "Low".
HTBSEL	J14	Input	HTBSEL: this signal when driven High or Low, is used in conjunction with the Hardware Block Protect Pins (HBP0, HBP1, and HBP2) determines if the write-protected memory area defined by the state of the HBP pins, starts from the top or the bottom of the memory array: This ball have a Pull down to Vss. If left disconnected it will be seen by device as "Low".
VDD	K12	Supply	Reference Voltage supply.
Vccio	G6, P6, G7, J7, P7, M8, H9, H11, N11, J13, M13, G14, P14	Supply	I/O power supply.
Vssio	M7, H8, L8, P10, H12, N12, P12, H13, N13	Supply	I/O ground supply.
Vcc	K6, M6, K7, G9, P9, G11, K11, P11, K13, K14, M14	Supply	Core power supply.
Vss	A3, B3, W3, Y3, A4, Y4, F5, G5, P5, R5, F6, H6, J6, L6, N6, R6, L7, N7, G8, P8, G10, H10, L12, L13, P13, F14, L14, N14, R14, F15, G15, P15, R15, A16, Y16, A17, B17, W17, Y17	Supply	Core ground supply.
DNU	H7, J8, J9, L10	-	Do Not Use: DNUs must be left unconnected, floating.
Dummy	A1,A2,A5,A6, A7,A8,A9,A10,A 11,A12,A13,A14 ,15,A18,A19 , B1,B2,B4,B5,B6 ,B7,B8,B9,B10, B11,B12,B13,B1 4,B15,B16,B18, B19 C1,C2,C18,C19, D1,D2,D18,D19, E1,E2,E18,E19,	Mechanical	Dummy balls are electrically not connected. *

Revision: H.2 Avalanche Technology Page 11 | 61

Signal	Ball Assignment	Туре	Description
	F1,F2,F18,F19,		
	G1,G2,G18,G19		
	,H1,H2,H18,H19		
	,J1,J2,J18,J19,K		
	1,K2,K18,K19,L		
	1,L2,L18,L19,M		
	1,M2,M18,M19,		
	N1,N2,N18,N19,		
	P1,P2,P18,P19,		
	R1,R2,R18,R19,		
	T1,T2,T18,T19,		
	U1,U2,U18,U19,		
	V1,V2,V18,V19,		
	W1,W2,W4,W5,		
	W6,W7,W8,W9,		
	W10,W11,W12,		
	W13,W14,W15,		
	W16,W18,W19,		
	Y1,Y2,Y5,Y6,Y7		
	,Y8,Y9,Y10,Y11,		
	Y12,Y13,Y14,Y1		
	5,Y18,Y19		

Package Options

224-ball FBGA (Balls Down, Top View)

Figure 6: 224-ball FBGA

Revision: H.2 Avalanche Technology Page 13 | 61

Package Drawings

[Notes]

1. RAW SOLDER BALL SIZE IS 0.350

2. SRO SIZE IS 0.300

Architecture

ASxxxx208 is a high performance serial STT-MRAM device. It features a SPI-compatible bus interface running in (QPI) DDR mode or SDR mode, eXecute-In-Place (XIP) functionality, and hardware/softwarebased data protection mechanisms.

When CS# is Low, the device is selected and in active power mode. When CS# is High, the device is deselected but can remain in active power mode until ongoing internal operations are completed. Then the device goes into standby power mode and device current consumption drops to ISB.

ASxxxx208 contains an 8-bit instruction register. All functionality is controlled through the values loaded into this instruction register. In Single SPI mode, the device is accessed via the SI / IO[0] pin of a Dual-Quad SPI 1 and the SI / IO[4] pin of a Dual-Quad SPI 2. In Quad mode, the IO[0:3] of a Dual-Quad SPI 1 and the IO[4:7] of a Dual-Quad SPI 2 are used respectively to access the device (consult Figure 2 & Figure 3). Furthermore, Single Data Rate (SDR) and Double Data Rate (DDR) instructions utilize CLK edges differently to transfer information; SDR uses a single CLK edge whereas DDR uses both edges of CLK. Table 5 & Table 7 summarizes all the different interface modes supported and their respective I/O usage. Table 8 shows the clock edge used for each instruction component.

Nomenclature adoption: A typical SPI instruction consists of command, address and data components. The bus width to transmit these three components varies based on the SPI interface mode selected. To accurately represent the number of I/Os used to transmit these three components, a nomenclature (command-address-data) is adopted and used throughout this document. Integers placed in the (commandaddress-data) fields represent the number of I/Os used to transmit the particular component. As an example, 1-1-1 means command, address and data are transmitted on a single I/O (SI / IO[0]] or SO / IO[1]) of a Dual-Quad SPI 1 and (SI / IO[4]] or SO / IO[5]) of a Dual-Quad SPI 2. On the other hand, 4-4-4 represents command, address and data being sent on eight I/Os: (IO[3:0]) of a Dual-Quad SPI 1 and (IO[7:4]) of a Dual-Quad SPI 2 (consult Figure 2 & Figure 3).

All AC timings and waveforms and DC specification are defined in the datasheet using single CS# (Chip Select) and CLK (Serial Clock) signals.

Instruction Component	Single SPI (1-1-1)	Quad Output SPI (1-1-4)	Quad I/O SPI (1-4-4)	QPI (4-4-4)
Command	SI / IO[0]	SI / IO[0]	SI / IO[0]	IO[3:0]
Address	SI / IO[0]	IO[0]	IO[3:0]	IO[3:0]
Data Input	SI / IO[0]	IO[3:0]	IO[3:0]	IO[3:0]
Data Output	SO / IO[1]	IO[3:0]	IO[3:0]	IO[3:0]

Table 5: Interface Modes of Operations – Device 1

Table 6: Interface Modes of Operations – Device 2

Instruction Component	Single SPI (1-1-1)	Quad Output SPI (1-1-4) Quad I/O SPI (1-4-4)		QPI (4-4-4)
Command	SI / IO[4]	SI / IO[4]	SI / IO[4]	IO[7:4]
Address	SI / IO[4]	IO[4]	IO[7:4]	IO[7:4]
Data Input	SI / IO[4]	IO[7:4]	IO[7:4]	IO[7:4]
Data Output	SO / IO[5]	IO[7:4]	IO[7:4]	IO[7:4]

Revision: H.2 Avalanche Technology

Instruction Type	Command	Address	Data Input	Data Output
(1-1-1) SDR	₽	ſ₽	<u>_</u> R	F¥_ 1
(1-1-1) DDR	_ R	R∱VF	R <u>∕</u> ¥ F	F¥_∱R 1
(1-4-4) SDR	<u>_</u> R	ſ₽	_ √ R	_F ¥_ 1
(1-4-4) DDR	₽R	₽₫₩₣	R∳¥F	F₽_AR 1
(4-4-4) SDR	<u>_</u> R	ſ₽	_ √ R	_F ¥_ 1
(4-4-4) DDR	₽	R∱₹	R₫₽₽	FV_AR 1

Table 7: Clock Edge Used for instructions in SDR and DDR modes

Notes:

R: Rising Clock Edge

F: Falling Clock Edge

1: Data output from ASxxxx208 always begins on the falling edge of the clock - SDR & DDR

ASxxxx208 supports eXecute-In-Place (XIP) which allows completing a series of read and write instructions without having to individually load the read or write command for each instruction. Thus, XIP mode saves command overhead and reduces random read & write access time. A special XIP byte must be entered after the address bits to enable/disable (Axh/Fxh) XIP.

ASxxxx208 offers both hardware and software-based data protection schemes. Hardware protection is through WP# pin. Software protection is controlled by configuration bits in the Status register. Both schemes inhibit writing to the registers and memory array.

Figure 8: Functional Block Diagram – Dual QSPI Device 1

Figure 9: Functional Block Diagram – Dual QSPI Device 2

Table 8: Modes of Operation – Device 1

Mode	ode Current CS# CLK SI / IO[3:0]		SO / IO[3:0]		
Standby	Isb	Н	Gated	Gated / Hi-Z	Hi-Z / Hi-Z
Active - Read IREAD		L	Toggle	Command, Address	Data Output
Active - Write IWRIT		L	Toggle	Command, Address, Data Input	Hi-Z

Notes: H: High (Logic '1') L: Low (Logic '0') Hi-Z: High Impedance

Table 9: Modes of Operation – Device 2

Mode Current		CS#	CLK	SI / IO[7:4]	SO / IO[7:4]
Standby	Standby I _{SB} H Gated Gated		Gated / Hi-Z	Hi-Z / Hi-Z	
Active - Read IREAD L		L	Toggle	Command, Address	Data Output
Active - Write Iwrite		Ĺ	Toggle	Command, Address, Data Input	Hi-Z

Device Initialization

When powering up, the following procedure is required to initialize the device correctly:

- VCC and VCCIO can ramp up together (RVR), if not possible then VCC first followed by VCCIO. The maximum difference between the two voltages should not exceed 0.7V before reaching the final value of VCCIO.
- VDD should be kept low until VCC and VCCIO have reached their minimum voltage values.
- The device must not be selected at power-up (a 10KΩ pull-up Resistor to VCCIO on CS# is recommended). Then a further delay of tPU (Figure 9) until VCC reaches VCC (minimum).
- During Power-up, recovering from power loss or brownout, a delay of tPU is required before normal operation commences (Figure 10).

Figure 9: Power-Up Behavior

The following procedure is required to power down the device correctly:

- It is recommended to power down all supplies together. If not possible then the following sequence must be followed 1-VCC, 2-VCCIO,3-VDD.
- Timing for Ramp down rate should follow ramp down time (RVF).
- CS# cannot be active during power-down (a 10KΩ pull-up Resistor to VCCIO is recommended).
- It is recommended that no instructions are sent to the device when VCC is below VCC (minimum).
- During power loss or brownout, if VCC goes below VCC-CUTOFF or V_{DD} goes below V_{DD-CUTOFF}. All supply voltages VCC, VCCIO and VDD must be dropped below their respective (RESET) values VCC_RST and VDD_RST for a period of tPD. Figure-10 timing needs to be observed for the subsequent power-up.

Revision: H.2 Avalanche Technology Pa

Figure 10: Power-Down Behavior

Table 10: Power Up/Down & Device Initialization Timing and Voltages

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc} Range			2.45	2.5 – 3.0	3.05	V
V _{DD} Range			0.85	0.9	0.95	V
V _{cc} Ramp Up Time	R _{VR}	All operating	30	-	-	µs/V
V _{cc} Ramp Down Time	Rvf	voltages and	20	-	-	μs/V
Vcc Power Up to First Instruction	teu	temperatures	250	-	-	μs
V _{cc} (low) time	t _{PD}		1			ms
V _{cc} Cutoff – Must Initialize Device	VCC-CUTOFF		1.6	-	-	V
V _{cc} (Reset)	Vcc_rst		0		0.3	V
V _{DD} Cutoff – Must initialize Device	VDD_CUTOFF		0.6	-	-	V
V _{DD} (Reset)	V _{DD_RST}		0	-	0.2	V

Revision: H.2 Avalanche Technology Page 19 | 61

Memory Map

Table 11: Memory Map

Device Density	Address Range	ess [31:0]	
512Mb	0000000h – 3FFFFFFh	[31:26] - Logic '0'	[25:0] - Addressable
1Gb	0000000h – 7FFFFFh	[31:27] - Logic '0'	[26:0] - Addressable
2Gb	0000000h – FFFFFFh	[31:28] - Logic '0'	[27:0] - Addressable
4Gb	000000h – 1FFFFFFh	[31:29] - Logic '0'	[28:0] - Addressable

Address Range

Figure 11: Address Range

Read any Register Addresses

Table 12: Register Addresses

Register Name	Address
Status Register	0x00000
Interrupt Status Register	0x000001
Configuration Register 1	0x000002
Configuration Register 2	0x000003
Interrupt Configuration Register	0x000004
ECC Test – Data Input Register	0x000005
ECC Test – Error Injection Register	0x00006
ECC Test – Data Output Register	0x000007
ECC Test – Error Count Register	0x00008
Extended Address Register	0x000009
Device Identification Register	0x000030

Revision: H.2 Avalanche Technology Page 21 | 61

Hardware Block Protection

The Hardware Block Protect signals (HBP0, HBP1, and HBP2), when driven High or Low, define the size of the memory array to be hardware protected against all Write memory array instructions. When one or more HBP signals are driven High, the relevant memory area, as defined in Table 14 and Table 15 below, becomes protected against all Write memory array instructions. When all three signals, HBP0, HBP1, and HBP2 are driven Low, the memory array is in normal operation without being write-protected.

The Hardware Top/Bottom Select signal (HTBSEL), when driven High or Low, is used in conjunction with the Hardware Block Protect signals (HBP0, HBP1, and HBP2) to determine if the write-protected memory area defined by the state of the HBP signals, starts from the top or the bottom of the memory array:

- When the HTBSEL signal is driven Low, the memory area, protected by the HBP signals, starts from the top of the memory array.
- When the HTBSEL signal is driven High, the memory area, protected by the HBP signals, starts from the bottom of the memory array.

These pins have an internal pull down to Vss. If the pins are left unconnected, the device will have no hardware protection and all regions of the device can be written to (unless the Software Block Protection is activated through the Status Register).

HBP [2]	HBP [1]	HBP [0]	Protected Portion	512Mb	1Gb	2Gb	4Gb
L	L	L	None	None	None	None	None
L	L	Н	Upper 1/64	3F00000h – 3FFFFFFh	7E00000h – 7FFFFFFh	FC00000h – FFFFFFh	1F800000h – 1FFFFFFFh
L	н	L	Upper 1/32	3E00000h – 3FFFFFFh	7C00000h – 7FFFFFh	F800000h – FFFFFFFh	1F000000h – 1FFFFFFFh
L	н	н	Upper 1/16	3C00000h – 3FFFFFFh	7800000h – 7FFFFFh	F000000h – FFFFFFh	1E000000h – 1FFFFFFh
н	L	L	Upper 1/8	3800000h – 3FFFFFFh	7000000h – 7FFFFFh	E000000h – FFFFFFh	1C000000h – 1FFFFFFh
н	L	Н	Upper 1/4	3000000h – 3FFFFFFh	6000000h – 7FFFFFFh	C000000h – FFFFFFh	18000000h – 1FFFFFFFh
н	Н	L	Upper 1/2	2000000h – 3FFFFFFh	4000000h – 7FFFFFh	8000000h – FFFFFFh	10000000h – 1FFFFFFFh
Н	Н	Н	All	0000000h – 3FFFFFFh	000000h – 7FFFFFh	000000h – FFFFFFh	0000000h – 1FFFFFFFh

Table 13: Hardware Top Block Protection Address Range Selection (HTBSEL Signal = L)

Table 14: Hardware Bottom Block Protection Address Range Selection (HTBSEL Signal = H)

HBP [2]	HBP [1]	HBP [0]	Protected Portion	512Mb	1Gb	2Gb	4Gb
L	L	L	None	None	None	None	None
L	L	н	Lower 1/64	000000h – 0FFFFFh	000000h – 01FFFFFh	000000h – 03FFFFFh	000000h – 07FFFFFh
L	Н	L	Lower 1/32	000000h – 01FFFFFh	000000h – 03FFFFFh	000000h – 07FFFFFh	000000h – 0FFFFFh

Revision:H.2

Avalanche Technology

1Gbit – 8Gbit Dual-Quad SPI P-SRAM Memory

HBP [2]	HBP [1]	HBP [0]	Protected Portion	512Mb	1Gb	2Gb	4Gb
L	Н	н	Lower 1/16	000000h – 03FFFFFh	000000h – 07FFFFFh	000000h – 0FFFFFFh	000000h – 1FFFFFFh
н	L	L	Lower 1/8	000000h – 07FFFFFh	000000h – 0FFFFFh	000000h – 1FFFFFFh	000000h – 3FFFFFFh
Н	L	н	Lower 1/4	000000h – 0FFFFFFh	000000h – 1FFFFFFh	000000h – 3FFFFFFh	000000h – 7FFFFFh
н	Н	L	Lower 1/2	000000h – 1FFFFFFh	000000h – 3FFFFFFh	000000h – 7FFFFFFh	000000h – FFFFFFh
н	Н	н	All	000000h – 3FFFFFFh	000000h – 7FFFFFFh	000000h – FFFFFFh	0000000h – 1FFFFFFFh

Notes: High (H): Logic '1' Low (L): Logic '0'

Register Map

Status Register / Device Protection Register (Read/Write)

Status register is a legacy SPI register and contains options for enabling/disabling data protection.

The WREN bit must be set to "1" to enable write operations. This bit can only be set by executing the Write Enable (WREN) instruction opcode.

The device supports Back-to-Back write operations: WREN is prerequisite to only the first Memory Array Write instruction. The WREN bit doesn't clear to "0" following subsequent memory write opcodes. WREN disable instruction must be executed to reset WREN.

Bits	Name	Description	Read / Write	Default State	Selection Options
SR[7]	WP#EN	Hardware Based WP# Protection Enable/Disable	R/W	0	1: Protection Enabled – write protects when WP# is Low 0: Protection Disabled – unprotected
SR[6]	RSVD	Reserved	R	0	Reserved for future use
SR[5]	TBPSEL	Software Top/Bottom Memory Array Protection Selection	R/W	0	1: Bottom Protection Enabled (Lower Address Range) 0: Top Protection Enabled (Higher Address Range)
SR[4]	BPSEL[2]	Block Protect Selection Bit 2	R/W	0	Plack Protection Pite (Table 17, Table
SR[3]	BPSEL[1]	Block Protect Selection Bit 1	R/W	0	Block Protection Bits (Table 17, Table 18)
SR[2]	BPSEL[0]	Block Protect Selection Bit 0	R/W	0	18)
SR[1]	WREN	Write Operation Protection Enable/Disable	R	0	 1: Write Operation Protection Disabled 0: Write Operation Protection Enabled
SR[0]	RSVD	Reserved	R	0	Reserved for future use

Table 15 : Status Register – Read and Write

Revision:H.2 Avalanche Technology

Page 23 | 61

Software Block Protection

These 4 bits are OR'ed with the Hardware Protection Bits and can be used to dynamically protect regions of memory.

BPSE L [2]	BPSEL [1]	BPSEL [0]	Protected Portion	512Mb	1Gb	2Gb	4Gb
0	0	0	None	None	None	None	None
0	0	1	Upper 1/64	3F00000h – 3FFFFFFh	7E00000h – 7FFFFFFh	FC00000h – FFFFFFFh	1F800000h – 1FFFFFFFh
0	1	0	Upper 1/32	3E00000h – 3FFFFFFh	7C00000h – 7FFFFFFh	F800000h – FFFFFFFh	1F000000h – 1FFFFFFFh
0	1	1	Upper 1/16	3C00000h – 3FFFFFFh	7800000h – 7FFFFFFh	F000000h – FFFFFFFh	1E000000h – 1FFFFFFh
1	0	0	Upper 1/8	3800000h – 3FFFFFFh	7000000h – 7FFFFFFh	E000000h – FFFFFFh	1C000000h – 1FFFFFFh
1	0	1	Upper 1/4	3000000h – 3FFFFFFh	6000000h – 7FFFFFFh	C000000h – FFFFFFh	18000000h – 1FFFFFFFh
1	1	0	Upper 1/2	2000000h – 3FFFFFFh	4000000h – 7FFFFFFh	8000000h – FFFFFFFh	10000000h – 1FFFFFFFh
1	1	1	All	0000000h – 3FFFFFFh	000000h – 7FFFFFFh	000000h — FFFFFFFh	0000000h – 1FFFFFFFh

Table 16: Software Top Block Protection Address Range Selection (TBPSEL=0)

Table 17: Software Bottom Block Protection Address Range Selection (TBPSEL=1)

BPSEL [2]	BPSEL [1]	BPSEL [0]	Protected Portion	512Mb	1Gb	2Gb	4Gb
0	0	0	None	None	None	None	None
0	0	1	Lower 1/64	000000h – 0FFFFFh	000000h – 01FFFFFh	000000h – 03FFFFFh	000000h – 07FFFFFh
0	1	0	Lower 1/32	000000h – 01FFFFFh	000000h – 03FFFFFh	000000h – 07FFFFFh	000000h – 0FFFFFFh
0	1	1	Lower 1/16	000000h – 03FFFFFh	000000h – 07FFFFFh	000000h – 0FFFFFh	000000h – 1FFFFFFh
1	0	0	Lower 1/8	000000h – 07FFFFFh	000000h – 0FFFFFFh	000000h – 1FFFFFFh	000000h – 3FFFFFFh
1	0	1	Lower 1/4	000000h – 0FFFFFFh	000000h – 1FFFFFFh	000000h – 3FFFFFFh	000000h – 7FFFFFFh
1	1	0	Lower 1/2	000000h – 1FFFFFFh	000000h – 3FFFFFFh	000000h – 7FFFFFh	000000h – FFFFFFh
1	1	1	All	000000h – 3FFFFFFh	000000h – 7FFFFFFh	000000h – FFFFFFh	0000000h – 1FFFFFFFh

WREN (Status Register)	WP#EN (Status Register)	WP# (Pin)	Status & Configuration Registers	Memory ¹ Array Protected Area	Memory ¹ Array Unprotected Area
0	X	Х	Protected	Protected	Protected
1	0	X	Unprotected	Protected	Unprotected
1	1	Low	Protected	Protected	Unprotected
1	1	High	Unprotected	Protected	Unprotected

Table 18: Software Write Protection Modes

Notes:

High: Logic '1' Low: Logic '0' X: Don't Care - Can be Logic '0' or '1' Protected: Write protected Unprotected: Writable Note 1: Memory address range protection based on Block Protection Bits

Extended Address Register (Read/Write)

For the 3-byte addressing mode, the extended address register provides a fourth address byte A[31:24] to enable the host to access memory area beyond 128Mb. The extended address register bits [4:0] operate as memory address bit A[24:28] to select one of thirty two 128Mb segments of the memory array.

The value of the extended address register does not change when a 3-byte read operation crosses the selected 128Mb boundary.

Dita	N I	Description	Read /	Default	Selection	
Bits	Name	Description	Write	State	Options	
[7:5]	A[31:29]	Reserved				
						111111: 32 rd Highest 128Mb segment (1F000000h – 1FFFFFFh)
					11110: 31 th 128Mb segment (1E000000h – 1EFFFFFh)	
					11101: 30 th 128Mb segment (1D000000h – 1DFFFFFh)	
					11100: 29 th 128Mb segment (1C000000h – 1CFFFFFh)	
					10111: 28 th 128Mb segment (1B000000h – 1BFFFFFh)	
					11010: 27 th 128Mb segment (1A000000h – 1AFFFFFh)	
					11001: 26 th 128Mb segment (19000000h – 19FFFFFh)	
					11000: 25 th 128Mb segment (18000000h – 18FFFFFh)	
					10111: 24 th 128Mb segment (17000000h – 17FFFFFh)	
					10110: 23 th 128Mb segment (16000000h – 16FFFFFh)	
		Enables			10101: 22 th 128Mb segment (15000000h – 15FFFFFh)	
		specified 128Mb			10100: 21 th 128Mb segment (14000000h – 14FFFFFh)	
	A[28:24]	memory	R/W	00000000	10011: 20 th 128Mb segment (13000000h – 13FFFFFh)	
[4:0]		segment			10010: 19 th 128Mb segment (12000000h – 12FFFFFh)	
		Up to 4Gb			10001: 18 th 128Mb segment (11000000h – 11FFFFFh)	
					10000: 17 th 128Mb segment (10000000h – 10FFFFFFh)	
					01111: 16 th 128Mb segment (0F000000h – 0FFFFFFh)	
					01110: 15 th 128Mb segment (0E000000h – 0EFFFFFh)	
					01101: 14 th 128Mb segment (0D000000h – 0DFFFFFh)	
					01100: 13 th 128Mb segment (0C000000h – 0CFFFFFh)	
					01011: 12 th 128Mb segment (0B000000h – 0BFFFFFh)	
					01010: 11 th 128 Mb segment (0A000000h – 0AFFFFFh)	
					01001: 10 th 128Mb segment (09000000h – 09FFFFFFh)	
					01000: 9th 128Mb segment (08000000h – 08FFFFFFh)	
					00111: 8 th 128Mb segment (07000000h – 07FFFFFh)	
					00110: 7 th 128Mb segment (06000000h – 06FFFFFh)	

Table 19: Extended Address Register – Read and Write

Revision: H.2 Avalanche Technology Page 26 | 61

Bits	Name	Description	Read / Write	Default State	Selection Options
					00101: 6 th 128Mb segment (05000000h – 05FFFFFh)
					00100: 5 th 128Mb segment (04000000h - 04FFFFFh)
					00011: 4 th 128Mb segment (03000000h – 03FFFFFh)
					00010: 3 rd 128Mb segment (02000000h – 02FFFFFh)
					00001: 2 nd 128Mb segment (01000000h – 01FFFFFh)
					00000: Lowest 128Mb segment (00000000h – 00FFFFFh)

Flag Status Register (Read Only)

Flag status register contains device's access status and addressing information.

Bits	Name	Description	Read / Write	Default State	Selection Options
FSR1[7]	ST	Device Access Status	R	1	1: Ready 0: Busy
FSR1[6:1]	RSVD	Reserved	R	0	Reserved for future use
FSR1[0]	RSVD	Reserved	R	0	Reserved for future use

Table 20: Flag Status Register - Read Only

Device Identification Register (Read Only)

Device identification register contains Avalanche's Manufacturing ID along with device configuration information.

Table 21: Device	Identification	Register -	Read Only
	aomouton	1.09.0.0	nouu oniy

Bits	Avalanche Manufacturer's ID	Device Configuration				
10[24.0]		Interface	Voltage	Temp	Density	Freq
ID[31:0]	ID[31:24]	ID[23:20]	ID[19:16]	ID[15:12]	ID[11:8]	ID[7:0]

Manufacturer ID	Interface	Voltage	Temperature	Density	Frequency	
31-24	23-20	19-16	15-12	11-8	7-0	
				0110 - Reserved		
	0010-HP Dual-Quad			1000 - 1Gb		
1110 0110	SPI	0001 - 3V	001040ºC to 125ºC	1001 – 2Gb	00000001 - 100MHz	
				1010 – 4Gb	1	
				1100 – 8Gb		

Configuration Register 1 (Read/Write)

Configuration Register 1 (CR1) controls the output drive strength selection, locking/unlocking data protection options set in the Status register. Once locked, the protection options cannot be changed in the Status register. In addition, CR1 controls the Write Enable protection (WREN - Status Register) reset functionality during memory array writing¹. This functionality makes SPI MRAM compatible to other SPI devices.

Bits	Name	Description	Read / Write	Default	Selection Options
CR1[7]	ODSEL[2]			1	VCCIO= 1.8V 2.5V 000: 1mA 2.5 mA 001: 3mA 5mA
CR1[6]	ODSEL[1]	Output Driver Strength		1	010: 5mA 10mA
CR1[5]	ODSEL[0]	Output Driver Strength Selector		1	011: 7mA 14mA 100: 1mA 2.5mA 101: 3mA 5mA 110: 5mA 10mA 111: 7mA 14mA
CR1[4]	RSVD	Reserved	R	0	Reserved for future use
CR1[3]	RSVD	Reserved	R	0	Reserved for future use
CR1[2]	MAPLK	Status Register Lock Enable/Disable (TBSEL, BPSEL[2:0]	R/W	0	1: Lock TBSEL and BPSEL[2:0] 0: Unlock TBSEL and BPSEL[2:0]
CR1[1]	WRENS[1]			0	00: Normal: WREN is prerequisite to all Memory Array Write instruction. (WREN is reset after CS# goes High) 01: SRAM: WREN is not a
CR1[0]	WRENS[0]	WREN Reset Selector (Memory Array Write Functionality)	R/W	0	prerequisite to Memory Array Write instruction (WREN is ignored) 10: Back-to-Back: WREN is prerequisite to only the first Memory Array Write instruction. WREN disable instruction must be executed to reset WREN. (WREN does not reset once CS# goes High) 11: Illegal - Reserved for future use

Table 22: Configuration Register 1 (CR1) – Read and Write

Notes:

1: Write Enable protection (WREN - Status Register) for Registers is maintained irrespective of the Configuration Register 1 settings. In other words, all register write instructions require WREN to be set and WREN resets once CS# goes High for the write instruction.

Revision: H.2 Avalanche Technology Page 29 | 61

Configuration Register 2 (Read/Write)

Configuration Register 2 (CR2) controls the memory array access latency.

Bits	Name	Description	Read / Write	Default State	Selection Options
CR2[7]	RSVD	Reserved	R	0	Reserved for future use
CR2[6]	RSVD	Reserved	R	0	Reserved for future use
CR2[5]	RSVD	Reserved	R	0	Reserved for future use
CR2[4]	RSVD	Reserved	R	0	Reserved for future use
CR2[3]	MLATS[3]			1	0000: 0 Cycles 0001: 1 Cycle 0010: 2 Cycles
CR2[2]	MLATS[2]			0	0011: 3 Cycles 0100: 4 Cycles 0101: 5 Cycles
CR2[1]	MLATS[1]	Memory Array Read/Read Any Register Latency	R/W	0	0110: 6 Cycles 0111: 7 Cycles 1000: 8 Cycles - Default
CR2[0]	MLATS[0]	Selection ¹		0	1001: 9 Cycle 1010: 10 Cycles 1011: 11 Cycles 1100: 12 Cycles 1101: 13 Cycles 1110: 14 Cycles 1111: 15 Cycles

Table 23: Configuration Register 2 (CR2) – Read and Write

Notes:

1: Latency is frequency dependent. Please consult Table 30, 31 and 32

Interrupt Configuration Register (Read/Write)

The Interrupt Configuration Register controls different events that trigger INT# pin transitioning from High to Low state. INT# pin can be configured in the INT# configuration register to transition to the active Low state when either ECC error is detected and not corrected or transitioning from the busy to the ready state.

This register also enables access to 1 of 4 die sitting on the internal bus. The ECC engine can be tested be enabling the Test Enable bit and selecting 1 of 4 die.

Bits	Name	Description	Read / Write	Default State	Selection Options
INTCR[7]	INTRF	Shows status of ECC error detection	R	0	Selection Options: 1: Unrecoverable ECC error detected 0: No unrecoverable ECC error detected
INTCR[6]	INTR	Clear Interrupt Status	W O		Selection Options: 1 = Resets Interrupt caused by unrecoverable ECC 0 = No Action
INTCR[5]	ECC_CR	Reset the ECC Error Count Register	W	0	Selection Options: 1 = Resets ECC count register to 0 0 = No Action
INTCR[4]		Reserved	-	-	-
INTCR[3:2]	ECCDS	Die Selection	w	0	Die Select Options: 11 = Die 4 selected 10 = Die 3 selected 01 = Die 2 selected 00 = Die 1 selected
INTCR[1]	ECCTE	ECC Test Enable	W	0	ECC Test Engine Test mode: 1 = Enable 0 = Disable
INTCR[0]	ECCDS	ECC Error Detection Selection	W	0	Selection Options: 1 = ECC detection will transition a High to Low state on the INT# pin 0 = ECC detection will not transition the INT# pin

Table 24: Interrupt Configuration Register – Read and Write

Error Correction Code (ECC) Test – Data Input Register

The contents of this register are entered into the ECC engine data buffer i.e. used as data input to test the ECC engine.

Table 25: ECC Test Data Input Register – Read and Write

Bits	Name	Description	Read / Write	Default State	Select Options
[31:0]	ECC_Data_In	Data Input	R/W	32'b0	Any value from 0x00000000 to 0xFFFFFFF

Error Correction Code (ECC) Test – Error Injection

The contents of this register are used as an error mask to inject error to test the ECC engine.

Table 26: ECC Test Error Injection Register – Read and Write

Bits	Name	Description	Read / Write	Default State	Select Options
[31:0]	ECC_Error_Injection	Error Mask	R/W	32'b0	1 in any position injects an error into ECC engine. For example, 0x00000003 will inject a two-bit error in two LSB bits i.e. the Data in the ECC engine buffer is Exclusive or'd with the error mask.

Error Correction Code (ECC) Test – Data Output Register

The contents of this register are the output of the ECC engine when testing the ECC engine.

Table 27: ECC Test Data Output Register – Read Only

Bits	Name	Description	Read / Write	Default State	Select Options
[31:0]	ECC_Data_Out	Output of ECC engine	R	32'b0	None – read only.

Error Correction Code (ECC) – Error Count Register

This register must only be used during TEST MODE for testing the ECC engine. The Error Count Register is incremented when uncorrectable ECC errors are induced during the test mode. During normal operation of the device, the content of this register is not reflective of corrected or uncorrected errors. An interrupt is generated on device pin INT# and the interrupt flag is set when an unrecoverable error is detected in test mode.

Table 28: ECC Count Register – Read Only

Bits	Name	Description	Read / Write	Default State	Select Options
[31:0]	Error_Count	Number of induced uncorrectable Errors detected during TEST mode	R	32'b0	None – read only

Table 29: Memory Array Read Latency Cycles vs. Maximum Clock Frequency (with XIP)

Read Type	Latency	Max Frequency
(1-1-1) SDR	12-15	100MHz
(1-1-1) DDR	8-15	50MHz
(1-4-4) SDR	12-15	100MHz
(1-4-4) DDR	8-15	50MHz
(4-4-4) SDR	12-15	100MHz
(4-4-4) DDR	8-15	50MHz

Table 30: Memory Read Latency Cycles vs. Maximum Clock Frequency (without XIP)

Read Type	Latency	Max Frequency
(1-1-1) SDR	0	50MHz

Table 31 : Read Any Register Command Latency Cycles vs. Maximum Clock Frequency

Read Type	Latency Cycles	Max Frequency
(1-1-1) SDR	8-15	100MHz
(1-4-4) SDR	8-15	100MHz
(4-4-4) SDR	8-15	100MHz

Instruction Set

Table 32: Instruction Set

#	Instruction Name	Command (Opcode)	(1-0-0)	(1-0-1)	(1-1-1)	(1-1-4)	(1-4-4)	(4-0-0)	(4-4-4)	XIP Byte	SDR	DDR	Latency Cycles	Address Byte	Data Bytes	Max. Frequency	Prerequisite	Note
1	No Operation	NOOP 00h	•					•			•			0		100 MHz		
2	Write Enable	WREN 06h	•					•			•			0		100 MHz		
3	Write Disable	WRDI 04h	•					•			•			0		100 MHz		
4	Enable QPI	QPIE 38h	•								•			0		100 MHz		
5	Enable SPI	SPIE FFh	•					•			•			0		100 MHz		
6	Read Status Register	RDSR 05h		•							•			0	1	50 MHz		
7	Read Flag Status Register	RDFSR 70h			•				•		•			0	1	50 MHz		
8	Read Device ID	RDID 9Fh		•							•			0	4	50 MHz		
9	Read Any Register - Address Based	RDAR 65h			•				•		•		•	4	1	100 MHz		
10	Write Status Register	WRSR 01h		•							•			0	1	100 MHz	WREN	
11	Write Any Register - Address Based	WRAR 71h			•				•		•			4	1	100 MHz	WREN	
12	Read Memory Array - SDR	READ 03h			•						•			4	1 to ∞	50 MHz		1,2

Revision:H.2Avalanche TechnologyPage 35 | 61

1Gbit – 8Gbit Dual-Quad SPI P-SRAM Memory

#	Instruction Name	Command (Opcode)	(1-0-0)	(1-0-1)	(1-1-1)	(1-1-4)	(1-4-4)	(4-0-0)	(4-4-4)	XIP Byte	SDR	DDR	Latency Cycles	Address Byte	Data Bytes	Max. Frequency	Prerequisite	Note
13	Read Memory Array - SDR	READ 13h			•						•			4	1 to ∞	50 MHz		1,2,5
14	Fast Read Memory Array - SDR	RDFT 0Bh			•				•		•		•	3	1 to ∞	100 MHz		1,2,3,5
15	Fast Read Memory Array - SDR	RDFT 0Ch			•				•		•		•	4	1 to ∞	100 MHz		1,2,3,5
16	Fast Read Memory Array - DDR	DRFR 0Dh			•				•	•		•	•	4	1 to ∞	50 MHz		1,2,3
17	Read Quad Output Memory Read - SDR	RDQO 6Bh				•					•		•	3	1 to ∞	100 MHz		1,2,3,5
18	Read Quad Output Memory Read - SDR	RDQO 6Ch				•					•		•	4	1 to ∞	100 MHz		1,2,3,5
19	Read Quad I/O Memory Read - SDR	RDQI EBh					•			•	•		•	4	1 to ∞	100 MHz		1,2,3
20	Read Quad I/O Memory Read - DDR	DRQI EDh					•			•		•	•	4	1 to ∞	50 MHz		1,2,3
21	Write Memory Array - SDR	WRTE 02h			•				•		•			4	1 to ∞	100 MHz	WREN	1,4
22	Fast Write Memory Array - SDR	4WRFT DAh			•				•	•	•			4	1 to ∞	100 MHz	WREN	1,2,4
23	Fast Write Memory Array - DDR	4DRFW DEh			•				•	•		•		4	1 to ∞	50 MHz	WREN	1,2,4
24	Write Quad I/O Memory Array - SDR	4WQIO D2h					•			•	•			4	1 to ∞	100 MHz	WREN	1,2,4
25	Write Quad I/O Memory Array - DDR	4DWQO D1h					•			•		•		4	1 to ∞	50 MHz	WREN	1,2,4

Notes:

Revision:H.2Avalanche TechnologyPage 36 | 61

1: A typical SPI instruction consists of command, address and data components. The bus width to transmit these three components varies based on the SPI interface mode selected. To accurately represent the number of I/Os used to transmit these three components, a nomenclature (command-address-data) is adopted and used throughout this document. Integers placed in the (command-address-data) fields represent the number of I/Os used to transmit the particular component. As an example, 1-1-1 means command, address and data are transmitted on a single I/O Dual-Quad SPI device 1 (SI / IO[0] or SO / IO[1]) and Dual-Quad SPI device 2 (SI / IO[04 or SO / IO[7]). On the other hand, 1-4-4 represents command being sent on a single I/O Dual-Quad SPI device 1 (SI / IO[0]) and Dual-Quad SPI device 2 (SI / IO[4]) - address/data being sent on four I/Os of Dual-Quad SPI device 1 (IO[3:0]) and Dual-Quad SPI device 2 (IO[7:4])

2: XIP allows completing a series of read and write instructions without having to individually load the read or write command for each instruction. A special mode byte must be entered after the address bits to enable/disable XIP – Axh / Fxh.

3: Fast Read instruction must include Latency cycles to meet higher frequency. They are configurable (Configuration Register 2 - CR2[3:0]) and frequency dependent.

4: WREN prerequisite for array writing is configurable (Configuration Register 1– CR1[1:0])

5. Support legacy device boot on Xilinx platforms

Instruction Description and Structures

All communication between a host and ASxxxx208 is in the form of instructions. Instructions define the operation that must be executed. Instructions consist of a command followed by an optional address modifier and data transfer to or from ASxxxx208. All command, address and data information are transferred sequentially. Instructions are structured as follows:

- Each instruction begins with CS# going Low (logic '0') and ends with CS# returning High (Logic'1').
- CLK marks the transfer of each bit.
- Each instruction starts out with an 8-bit command. The command selects the type of operation ASxxxx208 must perform. The command is transferred on the rising edges of CLK.
- The command can be stand alone or followed by address to select a memory location or register. The address is 4-byte (32-bit).
 - SDR: The address is transferred on the rising edges of CLK.
 - DDR: The address is transferred on both edges of the CLK in DDR.
- The address bits are followed by data bits. For Write instructions:
 - SDR: Write data bits to ASxxxx208 are transferred on the rising edges of CLK.
 - DDR: Write data bits to ASxxxx208 are transferred on both edges of CLK.
- In normal operational mode, Write instructions must be preceded by the WREN instruction. WREN instruction sets the WREN bit in the Status register. WREN bit is reset at the end of every Write instruction. WREN bit can also be reset by executing the WRDI instruction. ASxxxx208 offers two other modes, namely SRAM and Back-to-Back Write where WREN does not get reset after a write instruction to the memory array. These modes are set in Configuration Register 1.
- Similar to write instructions, the address bits are followed by data bits for read instructions:
 - SDR: Read data bits from ASxxxx208 are transferred on the falling edges of CLK.
 - DDR: Read data bits from ASxxxx208 are transferred on both edges of CLK. The start of read data transfer is always on the falling edge of the CLK.
- ASxxxx208 is a high-performance serial memory and at higher frequencies, read instructions require latency cycles to compensate for the memory array access time. The number of latency cycles required depends on the operational frequency and is configurable – Configuration Register 2. The latency cycles are inserted after the address bits before the data comes out of ASxxxx208.
- For Read and Write instructions, ASxxxx208 offers XIP mode. XIP allows similar instructions to be executed sequentially without incurring the command cycles overhead. XIP is enabled by entering byte Axh and disabled by entering byte Fxh. These respective bytes must be entered following the address bits.
- The entire memory array can be read from or written to using a single read or write instruction. After the staring address is entered, subsequent address is internally incremented as long as CS# is Low and CLK continues to cycle.

Revision:H.2Avalanche TechnologyPage 38 | 61

All commands, address and data are shifted with the most significant bit first. •

Figure 12 to Figure 20 show the description of SDR instruction types supported.

Figure 12: Description of (1-0-0) Instruction Type

Figure 13: Description of (1-0-1) Instruction Type

Revision: H.2 Avalanche Technology Page 39 | 61

Figure 15: Description of (1-1-1) Instruction Type (With XIP)

Revision:H.2 Avalanche Technology

Figure 16: Description of (1-1-1) Instruction Type (Without XIP)

Figure 17: Description of (1-1-4) Instruction Type (Without XIP)

Revision:H.2

Avalanche Technology

1Gbit - 8Gbit Dual-Quad SPI P-SRAM Memory

1 to ∞

Bytes

(Read)

8 to 15

Latency

Cycles

Figure 19: Description of (4-4-4) Instruction Type (Without XIP)

Revision:H.2

Avalanche Technology

Page 43 | 61

Figure 20: Description of (4-4-4) Instruction Type with XIP

Revision: H.2

Avalanche Technology

Page 44 | 61

Figure 21 to Figure 22 show the description of DDR instruction types supported.

Revision: H.2

Avalanche Technology

Page 45 | 61

Figure 22: Description of (1-4-4) DDR Instruction Type (With XIP)

Revision: H.2

Avalanche Technology

Revision: H.2 Avalanche Technology

Electrical Specifications

Parameter / Condition	Minimum	Typical	Maximum	Units
Operating Temperature (T _A)	-40.0	-	125.0	°C
Operating Temperature (T _A) Under Radiation	-40.0	-	85.0	°C
Vcc Supply Voltage	2.45	2.5 – 3.0	3.05	V
Vccio Supply Voltage	1.8 - 2.5 - 3.3			V
VDD Supply Voltage	0.85	0.9	0.95	V
Vss Supply Voltage	0.0	0.0	0.0	V
Vssio Supply Voltage	0.0	0.0	0.0	V

Table 33: Recommended Operating Conditions

Table 34: Pin Capacitance

Parameter	Test Conditions	Symbol	Maximum	Units
Input Pin Capacitance	TEMP = 25°C; f = 1 MHz; V _{IN} = 3.0V	CIN	5.0	pF
Output Pin Capacitance	TEMP = 25°C; f = 1 MHz; V _{IN} = 3.0V	CINOUT	6.0	pF

Table 35: Endurance & Retention

Parameter	Symbol	Test Conditions	Minimum	Units
Write Endurance	END	-	10 ¹⁶	cycles
Data Retention	RET	85°C	20	years

Table 36: DC Characteristics

D		Test	Density		3.0V Dev	/ice (2.5V-3.0	V)	
Parameter	Symbol	Conditions		Min	Typical ¹	85°C ²	Max ³	Units
			1Gb		90	180	300	mA
Active Read Current		$V_{CC} = 3.0V,$	2Gb		90	180	300	mA
Active Read Current	IREAD	CLK=100MHz	4GB		120	250	450	mA
			8Gb		200	400	750	mA
			1Gb		90	180	300	mA
Astivo Write Current		$V_{CC} = 3.0V,$	2Gb		90	180	300	mA
Active Write Current	IWRITE	CLK=100MHz	4GB		120	250	450	mA
			8Gb		180	400	750	mA
			1Gb		70	135	260	mA
		Vcc = 3.0V, CLK=Vccio,	2Gb		70	135	260	mA
Standby Current	ISB	CS#=V _{CCIO} ,	4GB		100	200	400	mA
		SI=WP#=V _{CCIO}	8Gb		200	350	700	mA
V _{DD} Standby Current		VDD=1V, Vccio=3.0V	1-8Gb		2	3	5	mA
V _{DD} Active Current		VDD=1V, Vccio=3.0V	1-8Gb		5	7	10	mA
Input Leakage Current	۱u	V _{IN} =0 to V _{CCIO} (max)		-	-		±1.0	μA
Output Leakage Current	ILO	V _{OUT} =0 to V _{CCIO} (max)		-	-		±1.0	μA
Input High Voltage (V _{ccio} =1.71-2.2)				0.65* Vccio	-			
Input High Voltage (V _{ccio} =2.2-2.7)	VIH			1.8			V _{CCIO} +0.2	V
Input High Voltage (V _{ccio} =2.5-3.0)				2.2				
Input Low Voltage (V _{ccio} =1.71-2.2)					-		0.6	
Input Low Voltage (V _{CCI0} =2.2-2.7)	VIL			-0.2			0.7	V
Input Low Voltage (V _{CCI0} =2.5-3.0)							0.8	
Output Low Voltage (V _{CCI0} =1.71-2.2)		I _{OL} = 2.0mA					0.4	
Output Low Voltage (V _{CCI0} =2.2-2.7)	Vol	I _{OL} = 2.0mA I _{OL} = 2.0mA		-			0.4	V
Output Low Voltage (V _{CCI0} =2.5-3.0)		I _{OL} = 2.0mA					0.4	
Output High Voltage (V _{CCI0} =1.71-2.2)		I _{он} = -0.1mA		1.4				
Output High Voltage (V _{CCI0} =2.2-2.7)	Vон	Iон = -0.1mA		1.7			-	V
Output High Voltage (V _{ccio} =2.5-3.0)		I _{OH} = -1.0mA		2.2				

Notes: ' Typical values are measured at 25°C

 $^2\,85^{\rm o}{\rm C}$ values are guaranteed by characterization; not tested in production

³ Max values are measured at 125°C

Table 37: Magnetic Immunity Characteristics

Parameter	Symbol	Maximum	Units
Magnetic Field During Write	H _{max_write}	24000	A/m
Magnetic Field During Read	H _{max_read}	24000	A/m

Table 38: AC Test Conditions

Parameter	Value
Input pulse levels	0.0V to V _{CCIO}
Input rise and fall times	3.0ns
Input and output measurement timing levels	Vccio/2
Output Load	CL = 30.0pF

Absolute Maximum Ratings

Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only. Exposure to maximum rating for extended periods may adversely affect reliability.

Parameter	Minimum	Maximum	Units
Magnetic Field During Write		24000	A/m
Magnetic Field During Read		24000	A/m
Junction Temperature		150	°C
Storage Temperature	-55 to 150		°C
Supply Voltage Vcc	-0.5	4.0	V
Supply Voltage Vccio	-0.5	3.8	V
Voltage on any pin	-0.5	Vccio + 0.2	V
ESD HBM (Human Body Model) ANSI/ESDA/JEDEC JS-001-2017	≥ 20	00 V	V
ESD CDM (Charged Device Model) ANSI/ESDA/JEDEC JS-002-2018	≥ 50	V	
Latch-Up (I-test) JESD78	≥ 100	mA	
Latch-Up (Vsupply over-voltage test) JESD78	Pas	sed	

Table 3	39: Absc	olute Maxii	mum Ratings

CS# Operation & Timing

Figure 23: CS# Operation & Timing

Table 40: SDR CS# Operation

Parameter	Symbol	Minimum	Maximum	Units
Clock Frequency	fclk	1	100 (SDR)	MHz
Clock Low Time	tc∟	0.45 * 1/ f _{CLK}	-	ns
Clock High Time	t _{CH}	0.45 * 1/ f _{CLK}	-	ns
Chip Deselect Time after Read Cycle	t _{CS1}	20	-	ns
Chip Deselect Time after Write Cycle (SPI)	t _{CS3}	600	-	ns
Chip Deselect Time after Write Cycle (QPI)	t _{CS5}	600	-	ns
CS# Setup Time (w.r.t CLK)	tcss	5	-	ns
CS# Hold Time (w.r.t CLK)	t _{сsн}	4	-	ns

Notes:

Power supplies must be stable

Table 41: DDR CS# Operation

Parameter	Symbol	Minimum	Maximum	Units
Clock Frequency	fclк	1.0	50 (DDR)	MHz
Clock Low Time	tc∟	0.45 * 1/ f _{CLK}	-	ns
Clock High Time	t _{CH}	0.45 * 1/ f _{CLK}	-	ns
CS# High Time (End of Read)	t _{CS1}	20.0	-	ns
CS# High Time (End of Memory Array Write) SPI	t _{CS3}	600.0	-	ns
CS# High Time (End of Memory Array Write) QPI	t _{CS5}	600.0	-	ns
CS# Setup Time (w.r.t CLK)	t _{css}	5.0	-	ns
CS# Hold Time (w.r.t CLK)	t _{CSH}	4.0	-	ns

Notes: Power supplies must be stable

Command, Address, XIP and Data Input Operation & Timing

Revision:H.2 Avalanche Technology

Figure 24: SDR Command, Address and Data Input Operation & Timing

Table 42: SDR Command, Address, XIP, and Data Input Operation & Timing

Parameter	Symbol	Minimum	Maximum	Units
Data Setup Time (w.r.t CLK)	tsu	2.0	-	ns
Data Hold Time (w.r.t CLK)	tнD	3.0	-	ns

Notes: Power supplies must be stable

Table 43: DDR Command, Address, XIP, and Data Input Operation & Timing

Parameter	Symbol	Minimum	Maximum	Units
Data Setup Time (w.r.t CLK)	tsu	4.0	-	ns
Data Hold Time (w.r.t CLK)	tнD	4.0	-	ns

Notes: Power supplies must be stable

Data Output Operation & Timing

Revision: H.2 Avalanche Technology Page 53 | 61

Parameter	Symbol	Minimum	Maximum	Units
CLK Low to Output Low Z (Active)	tcLz	0	-	ns
Output Valid (w.r.t CLK)	tco	-	9.0	ns
Output Hold Time (w.r.t CLK)	tон	1.0	-	ns
Output Disable Time (w.r.t CS#)	t _{HZCS}	-	9.0	ns

Notes:

Power supplies must be stable

Revision: H.2 Avalanche Technology

Page 54 | 61

Table 45: DDR Data Output Operation & Timing

Parameter	Symbol	Minimum	Maximum	Units
CLK Low to Output Low Z (Active)	tclz	0	-	ns
Output Valid (w.r.t CLK)	tco	-	9.0	ns
Output Hold Time (w.r.t CLK)	tон	1.0	-	ns
Output Disable Time (w.r.t CS#)	t _{HZCS}	-	9.0	ns

Notes:

Power supplies must be stable

Table 46: WP# Operation & Timing

Parameter	Symbol	Minimum	Maximum	Units
WP# Setup Time (w.r.t CS#)	twpsu	20	-	ns
WP# Hold Time (w.r.t CS#)	twphd	20	-	ns

Notes:

Power supplies must be stable

Thermal Resistance

Table 47: Thermal Resistance Specifications

Parameter	Description	Units		96/224 Ball FBGA								
Thermal	Thermal resistance		Top Die	2 nd Die	3 rd Die	4 th Die	5 th Die	6 th Die	7 th Die	Bottom Die	Controller	Reg
θις	(junction to case)	°C/W	2.03	2.05	2.00	1.88	1.67	1.38	1.00	0.54	1.25	10.9

Notes:

1: These parameters are guaranteed by characterization; not tested in production.

2: Case temperature, No Airflow T_{Case} 85 $^{\circ}\text{C}$

3: Worst case Junction temp specified for Top die (θ_{JA}) and Bottom die (θ_{JC})

Product Use Limitations

Avalanche reserves the right to make changes to the information in this document, and related hardware, software and system (collectively referred to as "**Products**") without notice. This document supersedes and replaces any and all prior or contemporaneous information or arrangement of any kind relating to the subject matter hereof. This document and any information set forth herein may not be reproduced without the prior written permission from Avalanche.

<u>Critical Applications</u>. Products are not authorized for use in applications in which failure of the Avalanche component could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("**Critical Applications**"). Avalanche assumes no liability for Products if used for Critical Applications. Should customer or distributor purchase, use, or sell any Avalanche component for Critical Applications, customer and distributor shall indemnify and hold harmless Avalanche and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such Critical Application, whether or not Avalanche or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Products.

Automotive Applications. Products are not rated for use in automotive applications unless specified by Avalanche. Avalanche assumes no liability for Products if used for automotive applications. Distributor and customer shall assume the sole risk and liability for such use and shall indemnify and hold Avalanche harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of Products in automotive applications.

<u>Customer Responsibility</u>. Customers are solely responsible for the design and operation of their systems using Products. It is customer's sole responsibility to determine whether Products are suited for their system. Customers are required to incorporate good safety design measures and adequate safeguards to eliminate risks of personal injury, death, or severe property or environmental damages that could result from failure of Products. **AVALANCHE ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS AND DAMAGES OR LOSSES OCCURING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.**

Products are not to be used in applications that would violate any relevant export laws and regulations of the United States and Japan and all other countries having competent jurisdiction ("Export Laws") to ensure neither MRAM products nor any direct product thereof is: (i) exported or re-exported directly or indirectly in violation of Export Laws; or (ii) used for any purpose prohibited by the Export Laws, including but not limited to nuclear, chemical, or biological weapons proliferation.

The information contained herein is presented only as guidance for Product use. Avalanche assumes no responsibility for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Products. No license to any intellectual property right is granted by this document, whether expressed or implied. You may not perform compositional, structural, functional or other analysis of Products, or undertake deconvolution or reverse engineering with respect to Products.

Limited Warranty

In no event shall Avalanche and its representatives be liable for any indirect, incidental, punitive, special or consequential damages (including but not limited to loss of use, revenue or profit), whether or not such damages are based on tort, warranty, breach of contract or other legal theory.

In no event shall Avalanche's aggregate liability for any breach, warranty, indemnity or other obligation or liability arising out of or in connection with the sale of Products or the use of any Products exceed the purchase price of the particular Product(s) or services with respect to which losses or damages are claimed.

Revision History

Revision	Date	Change Summary
REV A	01/10/2022	Initial release
		Package pinout updated to reflect Dual QSPI
		Removed DS1 & DS2 (Will not require a data strobe at these frequencies)
		Added 2 interrupt pins to the package
		Added 2Gb to the densities supported
REV B	3/30/2022	Changed signal description of Vccio. It wasn't clear that it is referring to I/O supply.
		Removed option of 1.8V Vcc supply
		Updated package pin definition: Changed Vccq to Vccio
		Added Pin assignment table
		Removed Deep Power down Enter and Exit commands
		Changed DDR max freq. from 80MHz to 54MHz
		Defined V _{DD2} for 8Gb devices as Ball J6. This is a NC ball on the 1, 2 &4Gb device
		Changed density field from 4 digits to 3 digits in part number.
		Added V _{DD} Currents to DC Characteristics
B.1	05/16/2022	Updated DC Characteristics Table: Current numbers are based on UMC's analysis
		of their current 22nm process.
		Added V _{DD} to supply line on Front page
B.2	05/23/2012	Updated Ball assignment table: N12 was not shown as Vss
		Updated Power sequencing description under DEVICE INITIALIZATION
		Added Absolute Maximum Ratings Table
		Called out specific voltages are allowed for V_{CCIO} on front page.
B.3	05/25/2022	Added Thermal Resistance table
2.0	00/20/2022	Added Absolute Maximum Rating on V _{DD and} V _{DD2}
		Changed the height of the package to allow for stacking of 8 rather than 4 devices
		This increases nominal height "A" from 1.39 to 1.85
REV C	06/01/2022	Changes the outer limit of package dimension to allow compatibility between 1-4 a
REVC	00/01/2022	8Gb densities. See Figure 5. See Changes to E and E2.
		Changed the nominal height "A" to be compatible with Gen 3 parallel devices:
		Nominal Height/Thickness in Figure 5 changed to 1.43
	07/00/0000	Leaded ball options added to Order Option table
C.1	07/20/2022	Removed Performance Table
		Added Figures to ToC
		Added Tables to ToC
		Updated SDR Data Output Operation & Timing
		Updated DDR Data Output Operation & Timing
		Renamed from 88Ball to 96Ball (Included mechanical support balls)
		Added Extended Safe Operating Area as well as Normal Operating Conditions
		Updated Memory Map Table
REV D	09/22/2022	Removed redundant Table under package drawing
		Updated Package Ball H12: This is DNU and not GRD
		Updated Power consumption in DC Characteristics Table
		Fixed wording on use for V _{BYP} in pin definition table
	11/21/2022	Added Op Code 13h to support legacy device boot on Xilinx platforms
REV E	12/23/2022	Added Op code 06Ch to support legacy device boot on Xilinx platforms
		This device is now available for use in LEO. The Extended Safe Operating Area
		(ESOA) is no longer described here and is only available through our partner
		program: As such Ball K10, J6 (previously external Vdd & Vdd2) are now NC and
		L10 (previously VBYP) has to be connected to Vss.
		Added 85°C power consumption to DC Characteristics Table.
E.1	01/10/2023	Added Hardware Block Protect function using HBP0, HBP1, HBP2, and HTBSEL
		signals
		Removed Serial Number Register
		Nominal Height/Thickness in Figure 6 changed from 1.43mm to 1.53mm
		Changed 0x6B command opcode to 3-Byte address from 4-Byte address
E.2	04/05/2023	Changed 0x0B command opcode to 3-Byte address from 4-Byte address
E. 2		

		Added 0x6C command opcode Changed latency cycles requirement to 10 from 8 for Fast Read in QPI (4-4-4)
E.3	05/26/2023	Input & Output Low & High Voltage levels have been redefined as references to
L.5	03/20/2023	V_{CCIO} rather than V_{CC} in the DC Characteristics.
		Specified Max temp to be junction rather than ambient.
E.4	05/27/2023	Added Extended Address Register
E.5	06/22/2023	Increased Deselect Time after Write Cycle to 600ns (Table 41).
E.6	06/23/2023	Increased tPU to 25ms (Table 10).
E.7	07/28/2023	Renamed Bit 6 in status register from SNPEN (Serial Number Protection
		Enable/Disable) to reserved. This is a R/W bit but has no function as There is no
	00/00/0000	serial number.
REV F	08/30/2023	Added 224 Ball package option Clarification that PEMS-INST-001 flow version of product will be supplied through a
		partner.
		Input & Output Low & High Voltage levels have been redefined as references to
		VCCIO rather than VCC in the DC Characteristics Table 37.
		Guideline on device initialization corrected to say: pullup on CS# is to VCCIO.
F.1	09/25/2023	Fixed the table and figure numbering in Device Power up and Power down
F.2	10/03/2023	Cleaned up DC Characteristics table
		Hardware RESET is now supported instead of JEDEC RESET
	11/10/2022	Updated Maximum rating table 40
	11/10/2023	Fixed Ball assignment for HTBSEL and HBP2 in Table-5 for 224-ball package. (The package drawing was correct).
F.3	11/21/2023	ECC Count register definition was incorrect. Only uncorrectable errors are
	11/21/2020	counted and increment the count.
		Maximum frequency of operation at all corner cases defined
		Removed Unique ID Register. This read only register always returned a 64
		bit Zero value.
F.4	01/02/2024	CR1 default for WREN was incorrectly stated as 10. It is 00.
		CR2 default for latency was incorrectly stated as 0000. It is 8 cycles: 1000
REV G	03/11/2024	This is the 224 Ball FBGA Package DQSPI datasheet.
		Ordering part number: Part number field "Performance" is now a reserved
		field. Product Operational frequency is defined in the Maximum Frequency
		of operation tables 29, 30, 31.
		Maximum operational frequency for this generation of 96Ball FBGA product
		is now targeted to be 108MHz SDR in Space.
		Clarified the definition/usage of the ECC count register
G.1	03/16/2024	Removed DC Output Current from Absolute Maximum Rating table. Maximum
		current is stated in the DC Characteristics table.
		Ball Re-assignment: K12 is now the VDD reference voltage and not a DNU ball.
	0.4/05/000.4	VDD Characteristics/Specification/Ramp UP/Down specified
	04/05/2024	Device specification only given under radiation
G.2	05/01/2024	Added Marking Specification. Updated tPU Specification: Vcc Power Up to First Instruction
0.2	03/01/2024	Updated latency timing for 108MHz (8 to 12 cycles).
REV H	05/23/2024	PRODUCTION RELEASE:
	00/20/2024	Production Test is now validated to run at 100MHz SDR/50MHz DDR
		Flag status register removed from read any register address table
		Default of CR1 is E0; ODS select options changed to current(mA) from
		ohm
		Read any register latency changed to 8-15
		VCCIO Typical value changed to 1.8 - 2.5
		VDD 85C Typ and Max updated
		Updated VIL, VIH, VOL and VOH in DC Characteristics Table
L	1	1

		Updated CS high time in Table 42. DDR same as SDR
		Updated tco and tHZCS changed to 9ns
H.1	06/12/2024	Flagstatus register only supported in 111 Mode: Number of add bytes 0
11.1	06/25/2024	Changed Vdd supply typical value from 1.0V to 0.90V.
		SO1 & SO2 signal description corrected to say they are output.
11.0	07/15/2024	Updated Power UP Behavior to allow for Vcc and Vccio mismatch
H.2	12/19/2024	Changed number of Burn in hours from 240 hours to 168 hours to be
		consistent with Industry standard for infant mortality rate.