

Migration from Everspin MR25H10 to Avalanche AS3001101 Application Note

AN000014 details the feature differences when migrating from the Everspin MR25H10 serial MRAM to Avalanche AS3001101 Serial (SPI) Persistent SRAM (P-SRAM).

1. Introduction

AS3001101 is a 1-Mbit serial (SPI) spin-transfer torque magneto-resistive random-access memory (STT-MRAM). MRAM technology is analogous to Flash technology with SRAM compatible read/write timings (Persistent SRAM, P-SRAM). Data is always non-volatile.

MRAM is a true random-access memory; allowing both reads and writes to occur randomly in memory. MRAM is ideal for applications that must store and retrieve data without incurring large latency penalties. It offers low latency, low power, virtually infinite endurance and scalable non-volatile memory technology.

AS3001101 has a Serial Peripheral Interface (SPI) bus interface supporting hardware/software based data protection mechanisms.

This application note provides a comparison of features that need to be taken into consideration when migrating from the Everspin MR25H10 MRAM to the Avalanche AS3001101 MRAM.

2. Feature Comparison

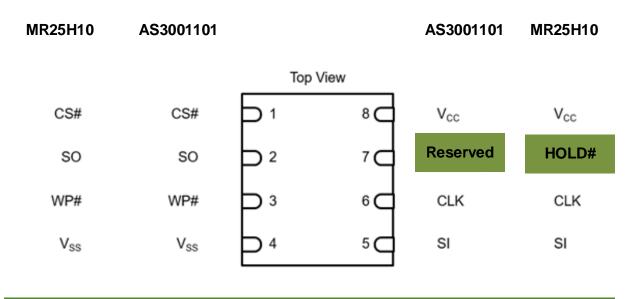
The AS3001101 is a memory device supporting x1 SPI interface operating at up to 50MHz SDR. The Everspin MR25H10 also supports single I/O SPI operation at a maximum frequency of 40 MHz SDR. As a result, the Avalanche offers higher performance and higher functionality compared with the Everspin device.

In addition to the 8-pad WSON, the AS3001101 is also available in 8-pin SOIC package. These packages are compatible with similar low-power volatile and non-volatile products. For non-automotive applications, the AS3001101 is offered over the same industrial (-40°C to 85°C) temperature range as the MR25H10 in addition to the industrial plus (-40°C to 105°C) temperature range which the MR25H10 does not offer.

Table 1 provides a feature comparison between the MR25H10 and the AS3001101.

	Feature	Everspin MR25H10	Avalanche AS3001101
Family		Serial	Serial
Technology		Toggle MRAM	STT-MRAM
Density		1Mbit	1Mbit
Voltage - Vcc		2.7 to 3.6V	2.7 to 3.6V
Interface		SPI	SPI
Bus Width		x1	x1
Mode		0,3	0,3
Frequency (MH	łz max)	40 (SDR)	50 (SDR)
Endurance ¹		Unlimited	1014
Data Retention	(yrs)	>20	>20
	0°C to +70°C		✓
Temperature -40°C to +85°C		✓	✓
Range -40°C to +105°C			✓
-40°C to +125°C (AEC-Q100 Grade 1)		✓	
Deelvere	8-WSON / 8-DFN / 8-DFN Small Flag	✓	✓
Package	8-SOIC		✓

Table 1: Feature Comparison


Note 1: Everspin does not list actual endurance number. MRAM devices have a finite number of write cycles. "Unlimited" is typically in reference to other non-volatile memories such as NOR or NAND with endurances of 10⁵ to10⁶ cycles.

3. 8-Pad WSON Pinout Comparison

The Avalanche AS3001101 is offered in three industry-standard packages: 8-pad WSON, 8-pin SOIC and 24-Ball FBGA.

The 8-pad WSON has the same footprint as the 8-pad DFN and 8-pad DFN Small Flag the MR25H10 is offered in. Figure 1 compares the WSON pinouts of the AS3001101 to the MR25H10.

The pinout of the AS3001101 is the same as the MR25H10. Everspin supports the HOLD# pin which is a legacy feature not commonly used. Pin 7 is not used in AS3001101 and pulling it high or low will have no effect on the operation of this device. System designers are allowed to tie Pin 7 to Vcc.

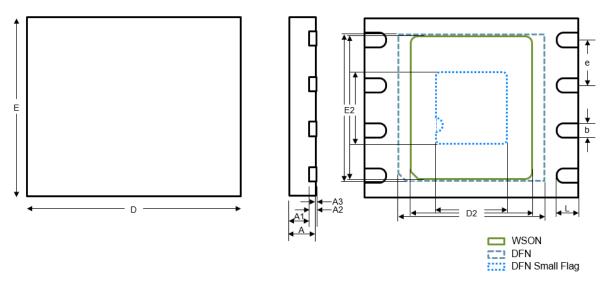


Figure 2: WSON vs DFN/DFN Small Flag Dimension Comparison

Table 2 lists the differences in dimensions of the three packages.

Table	2:	Package	Dimensions
-------	----	---------	------------

	Α	A1	A2	A3	D	Е	b	D2	E2	е	L
Package	Thickness	Standoff	Mold Thick.	Lead Thick.	Body Width	Body Len.	Lead Width	Pad Width	Pad Len.	Lead Pitch	Lead Len.
WSON	0.75	0.02	0.55	0.2 Ref	6.00	5.00	0.40	3.40	4.00	1.27 BSC	0.60
DFN	0.95	0.025	0.747	0.203	6.00	5.00	0.40	4.10	4.10	1.27 BSC	0.60
DFN Small Flag	0.95	0.025	0.747	0.203	6.00	5.00	0.40	2.00	2.00	1.27 BSC	0.60

With a package thickness of 0.75 mm, the 8-WSON is thinner than the either DFN or DFN small Flag with a thickness of 0.95 mm. The thinner package offered by the AS3001101 is an advantage for systems with height restrictions.

The exposed pad on the bottom of the package is different for the three packages. PCB's designed for either DFN or DFN small flag will accommodate the Avalanche WSON exposed metal pad.

4. Command (Op Code) Comparison

The AS3001101 supports a superset of the commands supported by the MR25H10. A comparison of the AS3001101 and the MR25H10 Op Codes is listed in Table 3.

Instruction Name	Op Co	ode	MR25H10	AS3001101	Comment
Write Enable	WREN	06h	✓	✓	
Write Disable	WRDI	04h	✓	\checkmark	
Read Status Register	RDSR	05h	✓	\checkmark	
Write Status Register	WRSR	01h	✓	\checkmark	
Read Memory	READ	03h	✓	\checkmark	
Write Memory	WRTE	02h	✓	\checkmark	
Enter Sleep Mode	DPDE	B9h	\checkmark	✓	
Exit Sleep Mode	DPDX	ABh	\checkmark	✓	
Read Device ID	RDID	9Fh	-	✓	Everspin does not support this function

Table 3: Op Code Comparison

5. Registers

The AS3001101 provides a superset of registers to access features not supported by the MR25H10. A comparison of the AS3001101 and the MR25H10 registers is listed in Table 4

Table 4: Register Comparison

Register Name	MR25H10	AS3001101	Comment
Status Register	✓	✓	
Device Identification Register	-	✓	Everspin does not support this register

The Status Register functions for the AS3001101 and the MR25H10 are the same for bits SR[0], SR[1], SR[2], SR[3] and SR7. The AS3001101 uses SR[4]-SR[5] to provide additional features not supported by the MR25H10. Table 5 lists the Status Register bit definition for the AS3001101 and MR25H10.

Note: The AS3001101 additional features are set after the device has boot-up. The default state of the status registers are same for both the AS3001101 and MR25H10. See *Table 6: Status Register – Default State Comparison*.

Bits	MR25H10	AS3001101	Comment
SR[7]	SRWD	WP#EN	Hardware based WP# Protection Enable/Disable. 1: Protection Enabled – write protects when WP# is Low 0: Protection Disabled – Doesn't write protect when WP# is Low Functionally the same.
SR[6]	Do Not Care	Reserved	Reserved
SR[5]	Do Not Care	TBSEL	Software Top/Bottom Memory Array Protection Selection. 1: Bottom Protection Enabled (Lower Address Range) 0: Top Protection Enabled (Higher Address Range) Note: Everspin only supports Top Block.
SR[4]	Do Not Care	BPSEL[2]	High order Block Protection Bit provides additional memory array protection areas. Note: Not supported by Everspin. Refer to <u>6. Block Protection</u> <u>Configuration</u> for more detail.
SR[3]	BP1	BPSEL[1]	Block Protection Bits
SR[2]	BP0	BPSEL[0]	Block Protection Bits
SR[1]	WEL	WREN	Write Operation Protection Enable/Disable. 1: Write Operation Protection Disabled 0: Write Operation Protection Enabled Functionally the same.
SR[0]	Do Not Care	RSVD	'Reserved for future use' on Avalanche. Functionally the same.

Table 5: Status Register – Bit Definition Comparison

The Status Register default setting on boot up for both the AS3001101 and the MR2xH is 00h. This means that both parts are initiated in the same state with regard to write protection which is disabled for the Status Register and the memory array and Top Protection selected. The Serial Number write protection feature SR[6] is not a concern as the Serial Number feature is not supported on the MR25H10 (e.g. do not care).

Bits	MR25H10	AS3001101	Comment
SR[7]	0	0	Everspin: Protection Disabled – Doesn't write protect when WP# is Low Avalanche: Protection Disabled – Doesn't write protect when WP# is Low
SR[6]	0	0	Everspin: Function not supported Avalanche: Reserved
SR[5]	0	0	Everspin: Only Supports Top Protection Avalanche: Top Protection Enabled (Higher Address Range)
SR[4]	0	0	Everspin: All Blocks Unprotected
SR[3]	0	0	Avalanche: All Blocks Unprotected
SR[2]	0	0	Avalanche. All blocks oriprotected
SR[1]	0	0	Everspin: Write Operation Protection Enabled Avalanche: Write Operation Protection Enabled
SR[0]	0	0	Everspin: N/A Avalanche: N/A

Table 6: Status Register – Default State Comparison

6. Block Protection Configuration

The AS3001101 provides four additional sizes for protecting the memory array in comparison to the MR25H10. To support this, the AS3001101 uses an extra bit in the Status Register SR[4], BLSEL[2], as the high-order Block Protection Bit. BPSEL[2] on the Avalanche device must be set appropriately to match the Everspin configuration. Table 7 compares the Block Protection for the AS3001101 and the MR25H10.

Block	MR2	5H10	
Protected	BP1	BP0	
None	0	0	
Upper 1/64	Not Supported		
Upper 1/32	Not Supported		
Upper 1/16	Not Supported		
Upper 1/8	Not Su	oported	
Upper 1/4	0	1	
Upper 1/2	1	0	
All	1	1	

AS3001101					
BPSEL[2]	BPSEL[1]	BPSEL[0]			
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Table 7: Block Protection Comparison

7. DC Parameters

Table 8 compares the DC Parameters for the MR25H10 and AS3001101. For most parameters the Avalanche AS3001101 provides an advantage over the MR25H10.

Parameter	Symbol	MR25H10	AS3001101	Comments
Supply Voltage	Vcc	2.7V to 3.6V	2.7V to 3.6V	
Read Current (1-1-1) SDR ¹	IREAD1	6 mA @40MHz	8 mA @54MHz	
Write Current (1-1-1) SDR ¹	IWRITE1	23 mA @40MHz	14 mA @54MHz	
Standby Current ¹	Isb	90 µA	160 µA	
Deep Power Down ¹	IDPD	7 μΑ	5 µA	
Input High Voltage	Vih	2.2V to Vcc+0.3	0.7xVcc to Vcc+0.3	Avalanche supports lower V _{IH} (min) of 2.1V @ 3.0V V _{CC}
Input Low Voltage	VIL	-0.5V to 0.8V	-0.3V to 0.3xVcc	Avalanche supports higher V_{IL} (max) of 0.9V @ 3.0V V _{CC} . Voltage swings cannot go below V_{IL} (min) of -0.3V for Avalanche
Output High Voltage Level	Vон	V _{CC} -0.2V (min) I _{OH} = -100 µA 2.4V (min) I _{OH} = -4 mA	Vcc-0.2V (min) I _{OH} = -100 µA 2.4V (min) I _{OH} = -1 mA	No change required. Note: V _{OH} must remain within logic levels for inputs on heavily loaded system buses
Output Low Voltage Level	Vol	V _{SS} +0.2V (max), I _{OL} =100 μA 0.4V (max) I _{OL} = 4 mA;	0.2V (max), I _{OL} =150 μA 0.4V (max) I _{OL} = 2 mA;	No change required. Note: VoL must remain within logic levels for inputs on heavily loaded system buses
Magnetic Field During Write	H _{max_write}	12,000 A/m	24,000 A/m	Avalanche has a higher magnetic immunity
Magnetic Field During Read	H _{max_read}	12,000 A/m	24,000 A/m	Avalanche has a higher magnetic immunity

Table 8: DC Parameter Comparison

8. AC Parameters

Table 9 compares selected AC Parameters for the MR25H10 and AS3001101. The Avalanche AS3001101 provides equivalent or better timing than the MR25H10.

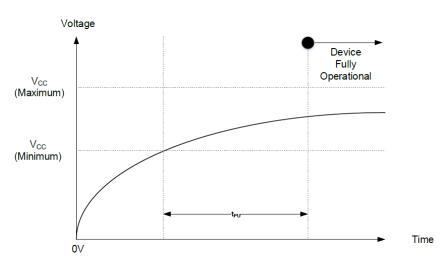

D 3 µs (mir	n) 3 µs (min)	
₂₀ 400 µs (m	in) 400 µs (min)	
s 12 ns (mi	n) 7.0 ns (max)	 Avalanche specifies this parameter as a Maximum while Everspin specifies a Minimum. Avalanche device ensures the bus is available after 7ns while the Everspin device releases the output sometime
) F	9PD 400 μs (m	A00 μs (min) 400 μs (min)

Table	g .	AC	Parameter	Comparison
Iable	э.		<i>i</i> arameter	Companson

9. Power-Up and Power-Down Behavior

Figure 3 and Figure 4 depict the Power-Up and Power-Down behavior. The AS3001101 provides a shorter Power-Up to first instruction time than the MR25H10.

Figure 3: Power-Up Behavior

Figure 4: Power-Down Behavior

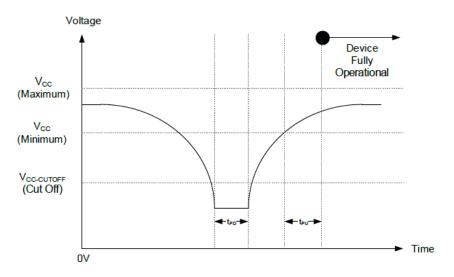


Table 10: Power-Up and Power-Down Comparison

Parameter	Symbol	MR25H10	AS3001101	Comment
V _{CC} Power Up to First Instruction	t _{PU}	400 µs (min)	250 µs (min)	Avalanche power-up time is shorter
V _{CC} Ramp Up Time	R _{VR}	Not Listed	30 µs/V (min)	
V _{CC} Ramp Down Time	R _{VF}	Not Listed	20 µs/V (min)	

10. Summary

The features of the AS3001101 provide system designers a straightforward migration path from the MR25H10 while also providing higher in-system performance for read and write operations with lower power consumption.

11. Revision History

Revision	Date	Change Summary	
REV A	09/22/2020	Initial release	
REV B	06/10/2021	Updated information allowing customers to tie Pin 7 (HOLD) to Vcc or Vss	