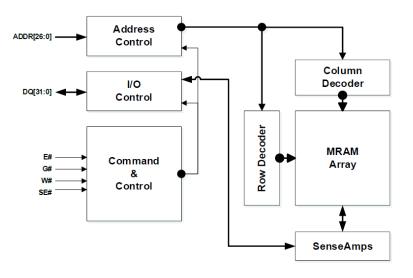
AS3xxGB32 Reference Design Utilizing Lattice MachX03 FPGA Platform Application Note

AN000018 provides basis functional operation of the Avalanche AS3xxGB32 P-SRAM Parallel x32 devices and several key P-SRAM board design considerations.

1. Introduction


The AS3xxGB32 is a high-speed asynchronous SRAM with densities offered in 1Gb and 4Gb, organizing in 32K bytes x 32 bits and 128K bytes x 32 bits respectively. The scalarly advanced 22nm STT-MRAM technology coupled with innovative circuit design provide low latency, high performance, and very reliable non-volatile memory solution. The Avalanche's 3rd Generation P-SRAM is ideal for Defense and Aerospace applications.

Memory access is controlled by Chip Enable (E#), Output Enable (G#) and Write Enable (W#).

To write to the device, drive Chip Enable (E#) and Write Enable (W#) inputs Low (Logic '0'). This enables data on I/O pins (DQ[0] to DQ[31]) to be written into the memory location specified by the address pins (ADDR[0] through ADDR[24]).

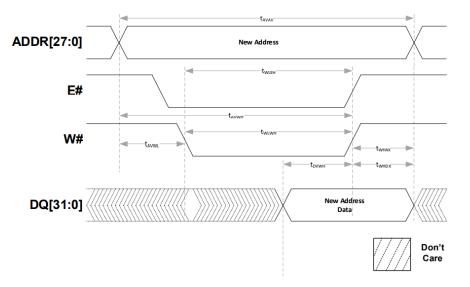
To read from the device, drive Chip Enable (E#) input Low (Logic '0'), Output Enable (G#) input Low (Logic '0') while maintaining Write Enable (W#) High (Logic '1'). This enables data from the memory location specified by the address pins (ADDR[0] through ADDR[24]) to appear on I/O pins (DQ[0] to DQ[31]).

Signal Description

Table 1: Signal Description

Signal	Ball Assignment	Туре	Description		
E#	P8	Input	Chip enable: Enables or disables the MRAM.		
G#	P7	Input	Output enable: Enables the output drivers for data transfer I/Os.		
CR#	J2	Input	Configuration Register enable: Enables access to the Configuration registers		
W#	M8	Input	Write enable: Transfers serial data from the host system to the MRAM when Low (Logic '0'). Transfers serial data from the MRAM to the host system when High (Logic '1').		
ADDR[26:0]	M2, L4, K13, M3, L3, M7, P12, L12, N11, N6, P6, L13, M13, P10, N10, M12, N13, L11, M11, P5, P3, N5, N4, M4, N2, N9, M9	Input	Address: I/Os for address transfer 1G: ADDR[24:0] – 25 Address pins for 1Gb x32 devices.* 4G: ADDR[26:0] – 27 Address pins for 4Gb x32 devices.		
DQ[31:0]	E2, F2, D2, E3, E12, D10, C9, C7, G4, G3, F13, D13, C10, E8, F6, E5, E13, G11, E10, F9, C8, C6, D6, D4, G12, C12, D11, D9, E7, C5, D5, C3	Input / Output	Data inputs/outputs: The bidirectional I/Os transfer data [15:0].		
INT#	G13	Output	Interrupt: Output generated by the MRAM when an unrecoverable ECC error is detected during read operation (output goes low on error).		
V _{CCIO}	F12, J12, E11, M10, D8, N8, D7, N7, M5, E4, F3, J3	Supply	I/O power supply.		
V _{SSIO}	F10, L10, E9, L9, F8, L8, F7, L7, E6, L6, G5,	Supply	I/O ground supply.		
V _{cc}	C13, P13, D12, N12, C11, F11, H11, J11, K11, P11, C4, F4, H4, J4, K4, P4, D3, N3, C2, P2	Supply	Core power supply.		
V _{ss}	A14, B14, C14, H13, R14, T14, A13, T13, A12, G10, H10, J10,	Supply	Core ground supply.		

Signal	Ball Assignment	Туре	Description
	K10, F5, L5, A2, T2, A1, B1, R1, T1		
DNU	J13, H12, K12, P9, M6, H5, J5, K5, H3, G2, H2, K2, L2		Do Not Use: DNUs must be left unconnected.
RFU	КЗ		Reserved for Future Use: requires to have an external pull-up resistor (10K Ω)


* Unused ADDR[26:25] balls should be connected to Ground

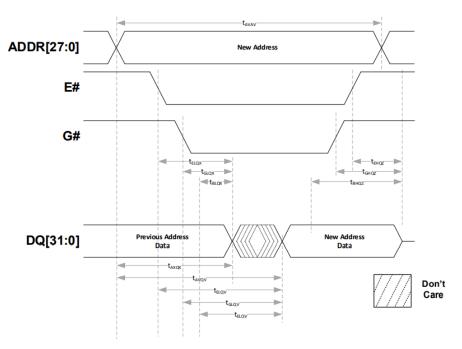
2. Functional Feature

2.1 Write & Read Timing

2.1.1 Write Operation

Table 2: Write Operation

Parameter	Symbol	Minimum	Maximum	Units
Write Cycle Time	tavav	45	-	ns
Address Set-Up Time	t avwl	0	-	ns
Address Valid to end of Write (G# High)	tavwн	28	-	ns
Address Valid to end of Write (G# Low)	tavwн	30	-	ns
Write Pulse Width (G# High)	twlwh, twleh	25	-	ns
Write Pulse Width (G# Low)	twlwh, twleh	25	-	ns
Data Valid to end of Write	tovwн	15	-	ns
Data Hold Time	t _{WHDX}	0	-	ns
Write recovery Time	t _{WHAX}	12	-	ns


Notes:

G# is High (Logic '1') for Write operation Power supplies must be stable

Addresses valid either before or at the same time as E# goes low

2.1.2 Read Operation

Figure 3: Read Timing

Table 3: Read Operation

Parameter	Symbol	Minimum	Maximum	Units
Read Cycle Time	tavav	45	-	ns
Address Cycle Time	t AVQV	-	45	ns
Chip Enable Access Time	t ELQV	-	45	ns
Output Enable Access Time	t GLQV	-	25	ns
Byte Enable Access Time	t _{BLQV}	-	25	ns
Output Hold From Address Change	taxox	3	-	ns
Chip Enable Low to Output Active	t _{ELQX}	3	-	ns
Output Enable Low to Output Active	t GLQX	0	-	ns
Byte Enable Low to Output Active	t _{BLQX}	0	-	ns
Chip Enable High to Output Hi-Z	t EHQZ	0	15	ns
Output Enable High to Output Hi-Z	t GHQZ	0	15	ns
Byte Enable High to Output Hi-Z	t _{BHQZ}	0	10	ns

Notes:

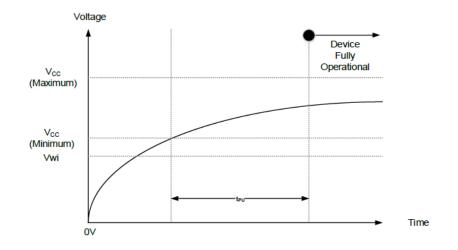
W# is High (Logic '1') for Read operation

Addresses valid either before or at the same time as E# goes low

2.3 P-SRAM Power Up and Power Down Consideration

When powering up, the following procedure is required to initialize the device correctly:

- Vcc and Vccio can ramp up together (RvR), if not possible then Vcc first followed by Vccio. The maximum difference between the two voltages should not exceed 0.7V.
- The device must not be selected at power-up (E# must follow the applied voltage on V_{CC} (a 10KΩ pull-up Resistor to V_{CC} is recommended)) until V_{CC} reaches V_{CC}(minimum) and then a further delay of t_{PU} (Figure 8).
- During Power-up, recovering from power loss or brownout, a delay of t_{PU} is required before normal operation commences (Figure 4).


When powering down, the following procedure is required to turn off the device correctly:

- Vcc and Vccio can ramp down together (RvF), if not possible then Vcc first followed by VCCIO. The maximum difference between the two voltages should not exceed 0.7V.
- The device must not be selected at power-down (E# must follow V_{CC} during power-down (a 10KΩ pull-up Resistor to V_{CC} is recommended)) until V_{CC} reaches VSS.
- It is recommended that no instructions are sent to the device when V_{CC} is below V_{CC} (minimum).
- During power loss or brownout, when V_{CC} goes below V_{CC-CUTOFF}. The voltage must drop below V_{CC}(Reset) for a period of tPD. The power-up timing needs to be observed after V_{CC} goes above V_{CC}(minimum)

Power supplies must be stable

Figure 4: Power Up Behavior

Figure 5: Power Down Behavior

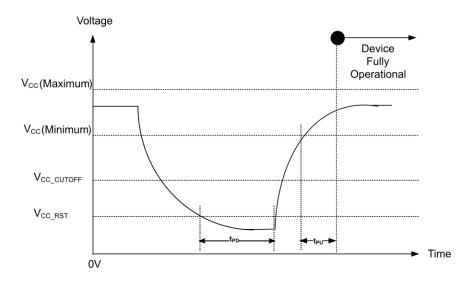


Table 4: Device Initialization Timing

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc} Range		All operating	2.7	-	3.6	V
V _{cc} Ramp Up Time	Rvr	voltages and	30	-	-	µs/V
V _{cc} Ramp Down Time	Rvf	temperatures	20	-	-	µs/V
V _{cc} Power Up to First Instruction	tPU		1	-	-	ms

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc} (low) time	t _{PD}		1			ms
V _{CC} Cutoff – Must Initialize Device	Vcc_cutoff		1.6	-	-	V
V _{cc} (Reset)	Vcc_rst		0		0.3	V

3. P-SRAM Parallel System Design Consideration

3.1 PCB Layout Guideline

3.1.1 Power and Ground Planes

Power planes improve decoupling between circuits, preventing noise from propagating through the power supply from one circuit to another. In addition, they enable larger current carrying capacity, lowering the operating temperature of the board.

Ground planes in multi-layer board simplifies connecting each component to the ground net, provides clear return path on the ground plane and reduces noise and interference.

• The test board is designed with 8-layers, including 2 power planes and 2 ground planes. $50\Omega \pm 10\%$, 8mil traces are used to reduce the trace impedance.

3.1.2 Reflection, Terminations and CrossTalk

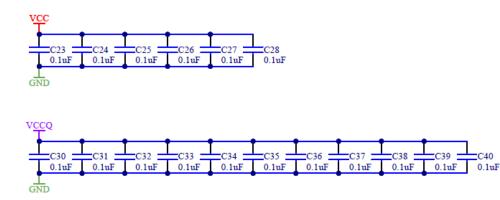
Figure 6: Termination Resistor

	Source re	rmination 39 Ohms		
FROM CONNECTOR TO BGA	FROM CONNECTOR TO BGA	FROM CONNECTOR TO BGA	FROM CONNECTOR TO BGA	
A0 1 810_WW 39 1% A0	A16 1 R26 WW 39 1% A16	DQ0 1 #38 39 14 DQ0	DQ16 1 #54 39 1% DQ16	E# 1 R1_WW-39 1% E#
Al R11_WW-39 1% Al	A17 1 827 WW 39 18 A17	DQ1 1 #39 AWA 39 18 DQ1	DQ17 1 855 WW 39 18 DQ17	W# 1 R5 39 18 W#
A2 1 812 WW 39 18 A2	A18 1 R28 WW 39 1% A18	DQ2 1 840 AWA 39 18 DQ2	DQ18 1 856 WWW 39 18 DQ18	G# 1 R6 39 18 G#
A3 1 813 WW 39 18 A3	A19 1 R29 WW 39 1% A19	DQ3 1 841 WW 39 18 DQ3	DQ19 1 857 39 18 DQ19	PG# 1 R7 WW 39 18 PG#
A4 1 814 WW 39 18 A4	A20 1 830 WW 39 1% A20	DQ4 1 842 WW 39 18 DQ4	DQ20 1 858 WWW 39 1% DQ20	CR# 1 R8 WW 39 18 CR#
A5 1 815 WW 39 18 A5	A21 1 831 WW 39 18 A21	DQ5 1 843 WW 39 18 DQ5	DQ21 1 859 WWW 39 18 DQ21	
A6 1 816 WW 39 18 A6	A22 1 R32 WW 39 1% A22	DO6 1 R44 AMA 39 18 DO6	DQ22 1 860 AWW 39 18 DQ22	
A7 1 817 WW 39 18 A7	A23 1 R33 WW 39 18 A23	DQ7 1 845 WW 39 18 DQ7	DQ23 1 861 39 1% DQ23	
AS R18 WW 39 1% AS	A24 1 R34 WW 39 18 A24	DOS 1 846 AMA 39 18 DOS	D024 1 862 WWW 39 1% D024	
A9] R19 WW 39 18 A9	A25 1 R35 WW 39 1% A25	DQ9 1 847 WW 39 18 DQ9	DQ25 1 R63 WWW 39 1% DQ25	MDS 0 R86_WW-39 1% GND
A10 1 820 WW 39 18 A10	A26 1 R36 WW 39 1% A26	DQ10 R48 WW 39 18 DQ10	DQ26 1 R64 39 1% DQ26	MDS 1 R87_WW-39 1% GND
All 1 821_WW 39 1% All	A27 1 R37 WW 39 1% A27	DOI1 1 849 WW 39 18 DOI1	DQ27 1 R65_WW_39 1% DQ27	mds an pad R88_WW-39 1% (GND
A12 1 #22 39 1% A12		DQ12 1 850 WW 39 18 DQ12	DQ28 1 86639 1% DQ28	
A13 1 823 WW 39 18 A13		DQ13 1 851 WW 39 14 DQ13	DQ29 1 867 WW 39 1% DQ29	
Al4 1 824 WW 39 18 Al4		DQ14 1 R52 WW 39 14 DQ14	DQ30 1 868 WW 39 1% DQ30	
A15 1 825 WW 39 18 A15		DQ15 1 R53 AMA 39 18 DQ15	DQ31 1 R69 WWW 39 16 DQ31	

- Clock signal is kept 3-4 times (24-25mil) away from other signals to avoid crosstalk.
- 39 Ohm resistor is used on each address, data and control signal

3.1.3 Signal Length Matching

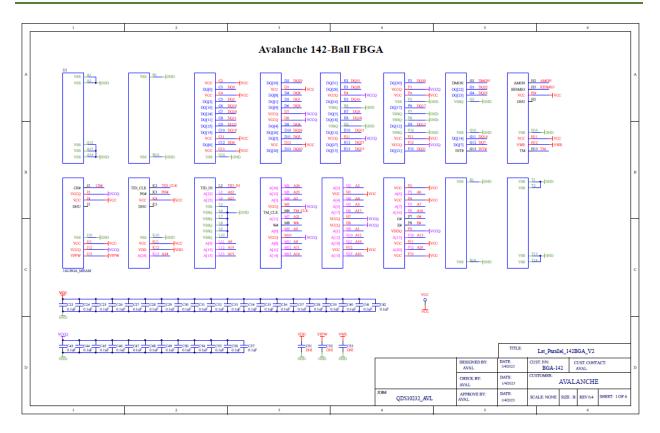
• Address signal group, data signal group, control signal group and clock are within 10ps. Clock signal is kept about 25mil away from other signals to ensure signal integrity.

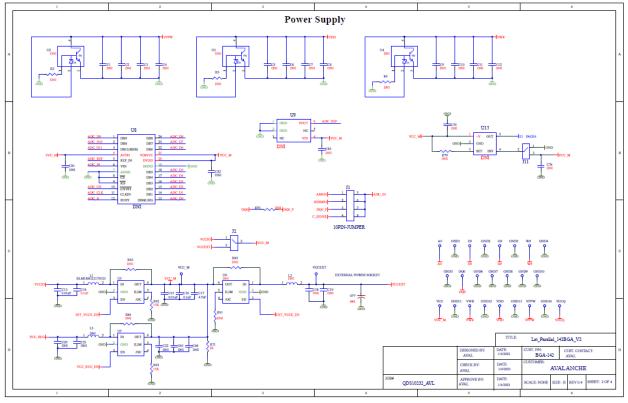


3.2 Decoupling/Bypass Capacitor

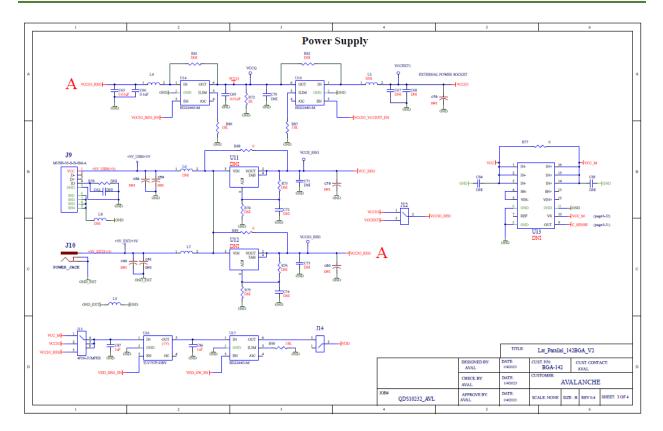
Selecting the right decoupling capacitor is important in the P-SRAM parallel design. It provides a low impedance path from the power plane to the ground plan and further prevent voltage swing on the power and ground pins. The recommendations are as follows:

- Keep decoupling capacitors as close to the component as possible
- For each active component, additional capacitors are required (refer to schematic below)
- Keep capacitors on the same side of the AS3xxGB32 if possible
- On V_{CC} and V_{CCQ}, multiple 0.1µF capacitors are required (refer to figure 7)

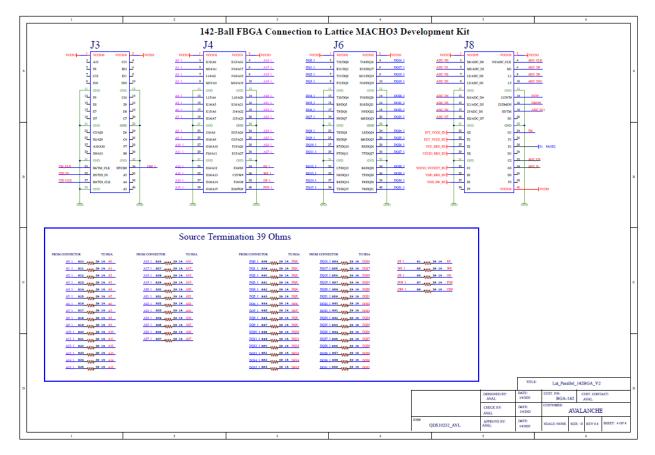

Figure 7: Decoupling Capacitor



3.3 Reference Schematic



AN000018



• BOMs, Board Layout, Gerber File and IBIS/Verilog models are available per request.

4. P-SRAM Evaluation Kit

The Avalanche P-SRAM[™] parallel x32 evaluation kit enables the users to evaluate Avalanche's 3rd generation P-SRAM parallel x32 product using a Lattice LCMXO3LF-6900C FPGA connected to Avalanche daughter board via Avalanche proprietary FPGA based Asynchronous SRAM interface. The Lattice LCMXO3LF-6900C FPGA board communicates with the computer using a micro-USB cables type B connector.

The Lattice Mach XO3 evaluation board is a low-cost and easy-to-use development kit used to evaluate and quickly start a development with Avalanche AS3xxGB32 devices. Key features include:

- Small form factor, low cost
- Instant-on boot-up
- Flexible programing I/O expansion up to 384 I/O pins
- 4 expansion header landings to allow access to user GPIOs
- Supports both 1.8V and 3V I/Os
- Internal oscillator & PLLs
- Custom hardware timing
- Extended temperature flexibility

Figure 8: Avalanche P-SRAM Daughter Board (front and back) with 142-Ball FBGA Socket

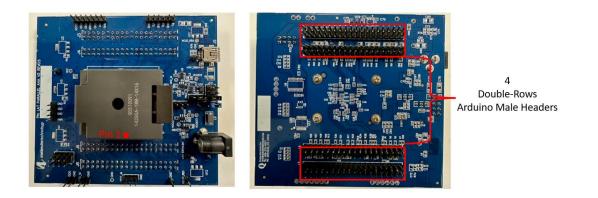
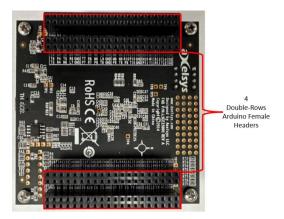



Figure 9: Lattice LCMX03L/LF-6900C FPGA board (back side) with 4 Installed Double-Row Arduino Female Header

Refer to the Eval Kit User Guide for more information on how to use the evaluation kit. Click <u>here</u> to download the user guide.

5. Revision History

Revision	Date	Change Summary	
REV A	10/25/2021	Initial release	
REV B	01/24/2023	Updated Signal Description Table	
		Updated Power-Up and Power Down Behavior Diagrams and Descriptions	
		Updated Avalanche Daughter Board Photo	