

Avalanche Company Overview

Hi-Rel STT pMTJ MRAM since 2006

17 years STT MRAM Experience

Domestic Technology

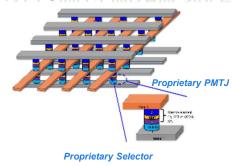
Most Next-Gen/STT MRAM Patents Stateside

Focused on Space and Hi-Rel Industrial

Shipping volume to Industrial customers since 2019

Hi-Rel Focused

Growing Ecosystem

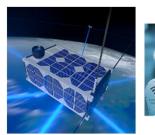


Growing Fab and Partner Ecosystem...

Avalanche Company Overview

Hi-Rel STT pMTJ MRAM since 2006

17 years STT MRAM Experience


Domestic Technology

325 **Granted** Patents & counting

Most Next-Gen/STT MRAM Patents Stateside

Focused on Space and Hi-Rel Industrial

Hi-Rel Industrial Heritage Shipping volume to Industrial customers since 2019

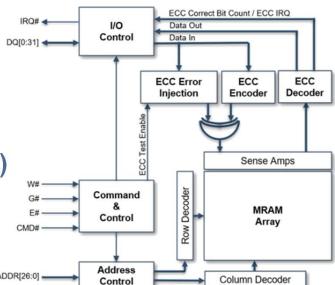
Hi-Rel Focused

Growing Ecosystem

Growing Fab and Partner Ecosystem...

The Avalanche's DARPA connection

Dr. Yiming Huai – CTO/VP of Technology


- Yiming was a co-founder, board member, CTO and VP of Engineering of Grandis, Inc, a pioneer in Spin Transfer Torque MRAM (STT-MRAM). Founded in 2001.
- Huai successfully raised more than \$30M in private and government funding to develop STT MRAM.
- Yiming has come full circle since the \$14.7M in government funding from a DARPA program led by Dr. Dev Shenoy as Program Manager in 2008.
- Yiming came to Avalanche to achieve the goal of building a highly reliable dual use (industrial & space) MRAMs.

All Avalanche Executive are Semiconductor Industry Veterans – see more at: (https://www.avalanche-technology.com/company/leadership/)

Best SWaP of any Hi-Rel Space NVMs

- Innovations in cell, circuit & device architecture over Toggle and early STT
- Designed for the Highest Reliability:
 - Robust On-chip ECC with multibit correction
 - Error-free non-destructive read w/ unlimited endurance
 - Error-free writes with 10¹⁶ endurance
- High Bandwidth Interface (711Mbps parallel/1.422Gbps streaming)
- Ultra Low Power
- No Shielding Required vs legacy Toggle MRAM
- Supports unified memory architecture
 - Architectural Simplification

Avalanche MRAM Advantages in Space

Highest Endurance 10¹⁶ of any Space MRAM

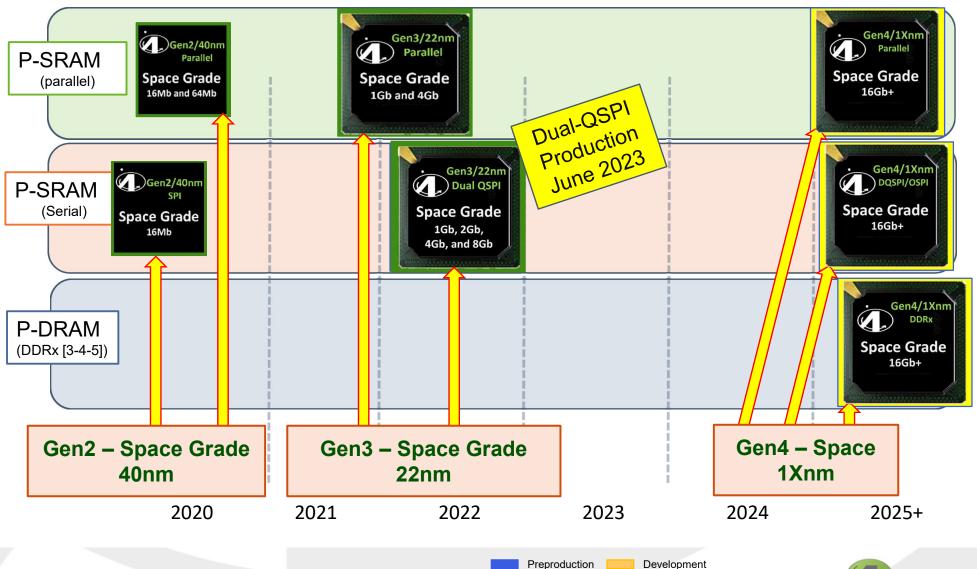
Gen3/22nm
Dual QSPI
Space Grade
8Gb

Multiple I/F options
Parallel, Dual-QSPI, DDR, etc.

Lowest Power Consumption

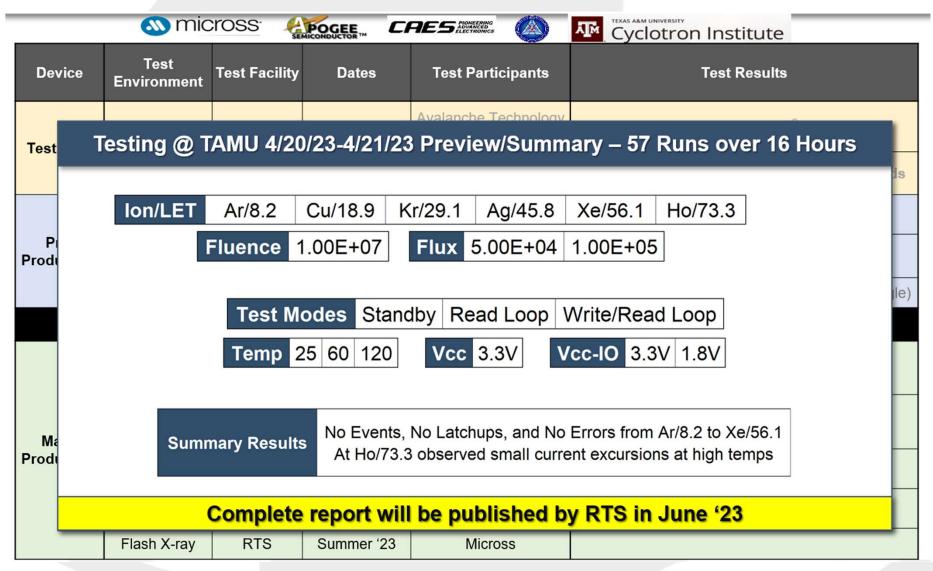
RHBD Techniques
No Shielding Required

Highest bits/mm² of any Space MRAM


Flight Heritage

Gen 2 Achieved!
Gen 3 Soon

Inherently radiation tolerant memory array


Avalanche Current and Future Roadmap

Production

Planned

Gen3 SEE/TID Test Results & Planning

Earth to Mars – Avalanche MRAM covers spectrum

- Avalanche MRAM technology & devices scalable by radiation classification
- Avalanche productized Space Grade as cost effective COTS+ solution
- Enabling partners with wafers & knowhow to support extended flows

Mission Use Case	Company	Product Family	Qual Level & Screening	TID	SEE	Packaging Options	ITAR
Terrestrial	avalanche technology RENESAS	Industrial Grade	JEDEC	<10KRad	<8MeV	Plastic - RoHS	No
Avionics, Missile, LEO	avalanche technology	Space Grade	JEDEC + 48hr burnin	<75KRad	~45MeV	Plastic - Leaded & RoHS	No
GEO	one source. one solution."	QED	PEMS, QML, & Custom	100KRad	~75MeV	Plastic - Leaded	Yes
GEO, Missile, Strategic	micross*	RadHard	QML, Custom	>300KRad	~75MeV	Plastic, Hermetic, Die, MCM	Yes

FIRMWARE OVER THE AIR (FOTA) UPDATES

Ingredients for FOTA

Support for Golden Images

Reliable fallback mechanism for an "update anomaly"

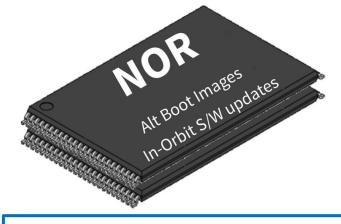
Support for Large Densities

- Storing multiple FPGA images is only part of the FOTA story...
- ...updating the RTOS (Linux) and the Applications are driving today's density requirements
- ...a customer is using a Versal AI Core w/ 64Gb (8 x 8Gb) for Full Linux PLUS regular AI/ML Model Updates

No Update Limit Count


- 10¹⁶ endurance means that you can write (continuously) to the same byte for ~15 years without wearing out
- Not a realistic scenario, but now you can consider our MRAMs as unlimited endurance no "virtual" about it

Architectural Simplification with a Unified Memory model


• Multiple domains and regions makes flight system architectures simpler than terrestrial systems

Discrete Memory Domains – Legacy Implementations

ROM/PROM
No software overrides
Golden Image/Boot Loaders

Write Protected
Software override to Store
New Images up to size

[Optional] Volatile Execute Memory for Storing Transient Data

Unified Memory: Multiple Domains, Multiple Regions, Single Device

Today's Implementation:
Your Designs with Avalanche

Read-Only

Golden Images, Boot Code

Write Protected

RTOS, Alt Images, ML models

NV Read/Write

Execute Memory/Data Logging

Physical Setting
No software overrides

Write Protected
Software override up to Read-Only Area

Remainder of Array is Persistent Read/Write

0% - 100%

Read-Only% - 100%

(R-O+W-P)% - 100%

VALIDATION AND DEMONSTRATION

Versal ACAP Boot Memory Addressing Limits

From: Versal ACAP System Software Developers Guide (UG1304)

Table: Boot Mode Search Limit

Boot Mode	Search Offset Limit
OSPI (single, dual-stacked)	8 Gb
QSPI24 (dual-parallel)	256 Mb
QSPI24 (single, dual-stacked)	128 Mb
QSPI32 (dual-parallel)	8 Gb
QSPI32 (single, dual-stacked)	4 Gb
SD0 (3.0), SD1 (2.0), SD1 (3.0), or eMMC1	8191 FAT files (default)
eMMC1 (raw)	eMMC device size

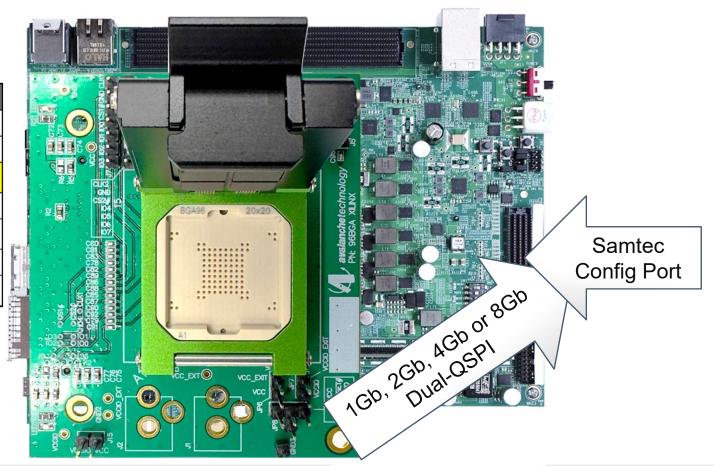
Note: When using OSPI or QSPI dual-stacked mode, the BootROM can be additional image storage.

Space-Grade High Performance Dual-Quad Serial Performance Dual-

(AS301G208, AS3/ G208, AS304G208, AS308G208)

Features

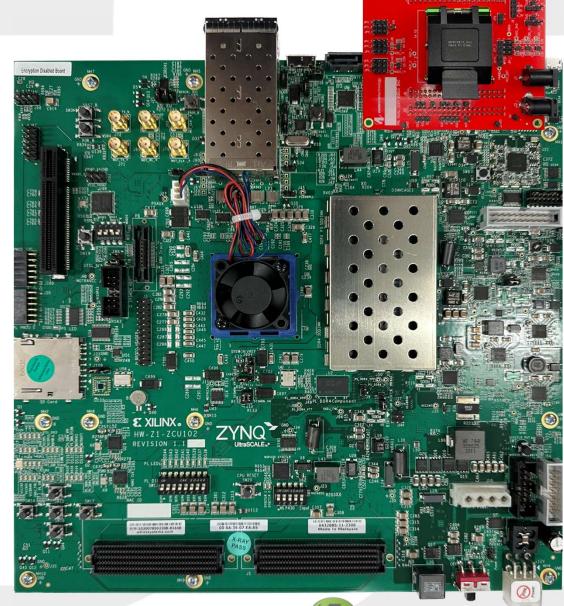
- Interface
 - Dual Quad SPI sy 8-bit wide transfer
 - Dual QPI (4-4-4) to 108MHz SDR
 - Dual QPI (4-4- up to 54MHz DDR
- Technology
- 22nm pMTJ MRAM
- Data Endurance: 10¹⁶ write cycles
 Data Retenue: 20 years @ 85°C
- Jensity
- 1Gb, 2Gb, 4Gb, 8Gb
- o, erating Voltage Ran
- V_{CC}: 2.70v 3.60V
- Vccio: 1.8V, 2.5V, 3.0V, 3.3V ***
- V_{DD}: 1.00V ****
- Operating Temperature Range
- Industrial Extended: -40°C to 125°C


- Packages
- 96-ball FBGA (20mm x 20mm)
- Data Protection
 - Hardware Based
 Write Protect Pin (WP#)
 - Software Based
 - Address Range Selectable through Configuration bits (Top/Bottom, Block Protect [2:0])
- Identification
- 64-bit Unique ID
- 64-bit User Programmable Serial Number
- Supports JEDEC Reset
- 48-hour burn-in at 125°C
- RoHS & REACH Compliant *
- PEMS-INST-001 Flow **

Validating the Versal Boot on a VCK190

Device	Series	Total	Images in 8Gb
VP2802	Versal Premium	3.0 Gbits	2.7
***	0.00	***	***
VC1902	Versal AI Core	884 Mbits	9.3
***	0.00	***	***
VM2202	Versal Prime	432 Mbits	19
***	***	***	***
VE2002	Versal Al Edge	44 Mbits	187

Table shows 4 family members from a total of 39 family members Source - Versal ACAP Technical Reference Manual (AM011)


Validating the UltraScale+ Boot on a ZCU102

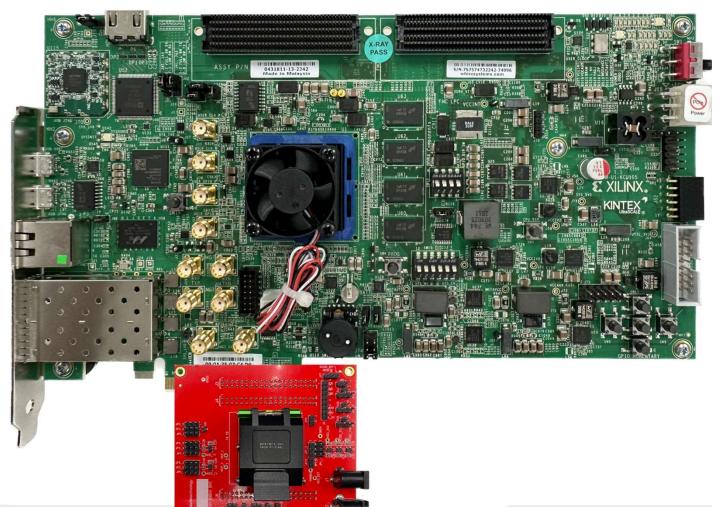
Zynq UltraScale+ MPSoCs

Device	Mbits/Image	Images/Gbit
ZU17	277.3	3.7
***	***	***
ZU6	202.3	5.1

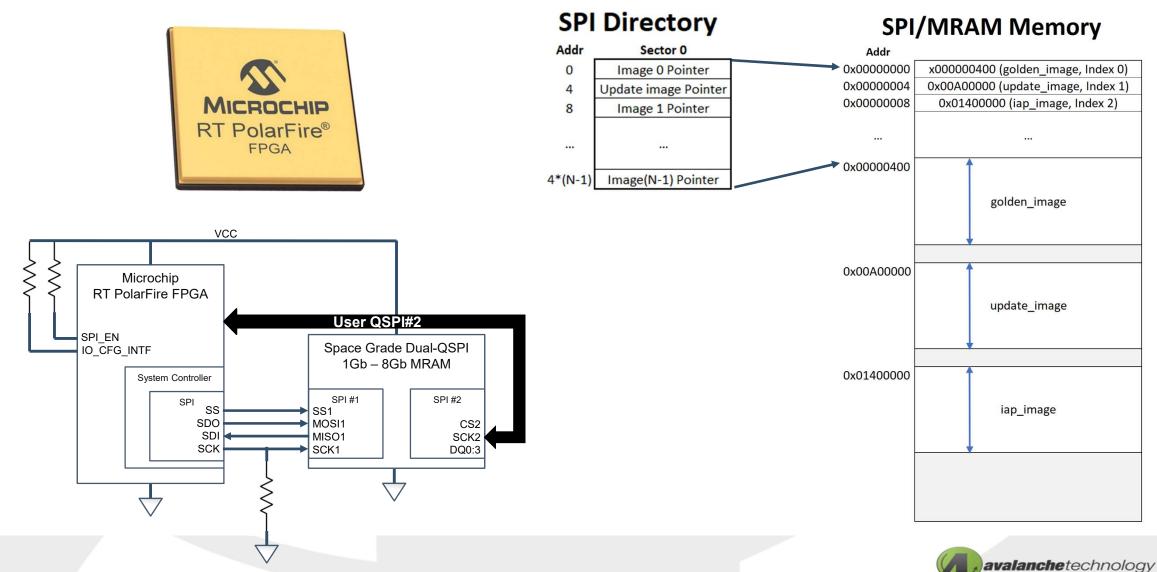
ZU1	22.7	45.2

Table shows 3 family members 26

Source - Zynq UltraScale+ Device Technical Reference Manual (UG1085)



Validating the UltraScale Boot on a KCU105


Kintex UltraScale FPGAs

Device	Mbits/Image	Images/Gbit
KU085	368	2.8
000		***
KU060	184	5.6
000		•••
KU040	122	8.4

Table shows 3 family members 7 UltraScale+ Kintex Members Source - UltraScale Architecture Configuration - User Guide (UG570)

Updating Microchip's RT PolarFire on-board Flash with MRAM

AVALANCHE PROPRIETARY AND CONFIDENTIAL

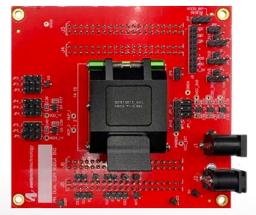
Available to Order Today

Gen3 Parallel

1Gb & 4Gb in Production

Parallel Dev Kit

For Space Grade w/ JEDEC flow, order from approved distributors:


For PEMS, QML flows in plastic, hermetic, die/wafers, work with:

Gen3 Serial

1Gb, 2Gb, 4Gb, & 8Gb in Production June-'23

Dual-QSPI Dev Kit

Versal Boot Module

Summary...

Best SWaP

- Highest Density (up to 8Gb)
- Lowest Power
- No Shielding Required
- COTS+ screening flows

Unified Memory

- Low latency, I/F like SRAM
- Boot large images + RTOS + working mem
- Flexible, robust write protection
- Architectural simplification

Hi-Rel by Design

- ECC w/ Multibit Correction
- Highest Endurance
- Inherently RadHard Cell
- RHBD for CMOS Protection

On-Shore / QML

- Domain Experts in RadHard & Testing
- 40+ years in PEMS & QML quals
- US Wafer Banks for Supply Assurance
- Avalanche will use Micross Packaging

Summary

- Lowest Persity (up to 8Gb)

 Lowest Personnel

 Lo
- No Shielding Required
- COTS+ screening flows

- Low latency, Wilke SRAM
 Boot large in a gray working mem
- Flexible, robust write protection
- Architectural simplification

- High-Rel rection
- By Design
- RHBD for CMOS Protection

On-Shore
Domain Experts in RadHard & Testing

- 40+ y PEMS to QMLIs
- US Wafer Banks for Supply Assurance
- Avalanche will use Micross Packaging

Thank You!

